RESEARCH FINDINGS LINKING WORKPLACE FACTORS TO CARDIOVASCULAR DISEASE OUTCOMES

SHIFT WORK, LONG HOURS, AND CARDIOVASCULAR DISEASE: A REVIEW by Kyle Steenland, PhD

Data from industrialized countries suggests that irregular patterns of work, such as shift work and extensive overtime work, have become increasingly common. In conjunction with this trend, there are more epidemiologic studies of the health effects of such irregular patterns of work, a number of which focus on heart disease. The following is a review of the literature, with comments on possible mechanisms linking irregular hours and heart disease as well as on the methodologic difficulties of studying this topic. Shift work and heart disease are the primary focus here, because most of the epidemiologic efforts have been directed at this area, but the epidemiology of overtime work and heart disease also is reviewed.

Shift Work and Heart Disease

DEFINITION AND PREVALENCE OF SHIFT WORK

Shift work refers to work patterns other than the standard day shift. It therefore includes both rotating shifts in which the worker works a rotating pattern of days, evenings, and nights, and permanent shift work in which a worker works steadily during evenings or nights (second or third shift). Most of the epidemiology regarding the health effects of shift work has focused on rotating shifts. There are many forms of rotating shifts. A worker may work a week of days, a week of evenings, and a week of nights, with weekends off. He or she may work three shift rotations changing more frequently, including sometimes double shifts (16 hours), or perhaps alternative day and night work.

The prevalence of shift work varies from country to country, but most data suggest that in Western industrial countries approximately 10–20% of workers now work rotating shifts. Taylor and Pocock cite a figure of 25% for England in 1968; Tenkanen, et al. cite an estimate of 15–20% for Europe currently; and Knutsson, et al. report an estimated 10–12% in Sweden in the early 1990s.134,251,256 Gordon, et al. cite a figure of 26% for men and 18% for women in the United States in 1980.60 It appears that in both Europe and the U.S. the proportion of workers on rotating shifts has been increasing since WW II.60 For some particular occupations such as nursing, the proportion of workers on rotating shifts is very high. In Boston, for example,

OCCUPATIONAL MEDICINE: State of the Art Reviews—
60% of nurses reported in 1988 that they had a history of shift work. Permanent
shift work appears to be more rare than rotating shift work; for example, Akerstedt, et al. report Swedish data showing a prevalence of only 7% for permanent shift work.2

MECHANISMS FOR SHIFT WORK AND HEART DISEASE

Shift work might reasonably be considered a risk factor for heart disease because: (1) shift work, especially rotating shift work, disrupts circadian rhythms, which are are linked to a number of CV risk factors such as blood pressure, heart rate, and catecholamine levels, (2) shift work is either correlated with or leads to poorer lifestyle factors which in turn are related to increased CV disease, e.g., reduced physical activity, poorer diet, increased cigarette consumption, and less social contact, and (3) shift work involves more occupational stress because such jobs are more demanding and often involve less control on the part of the worker, and increased stress may increase heart disease. These possible mechanisms clearly are not exhaustive. For example, Harma mentions the known decrease in fibrinolysis in early morning hours which might preferentially affect night workers, or some unknown aspect directly related to sleep deprivation itself.25 Boggild and Knutsson provide a more thorough review of potential mechanisms.23 Note that for the second pathway described above, shift work could be either causal or simply a marker for confounders (standard heart disease risk factors), which when controlled would eliminate any association between shift work and heart disease.

The (continual) disruption of circadian rhythm for rotating shift workers is probably the strongest proposed mechanism, with important and documented effects on the CV system (see Chapter 5 for a review). However, key questions remain about exactly how this disruption might lead to increased disease in shift workers, and whether they can adapt to such disruption.

Shift work could cause either acute or chronic effects on the heart, i.e., acute effects while performing shift work, or chronic effects years later. Disruption of circadian rhythms might be suspected of having acute effects, although chronic alterations of blood pressure, for example, might lead to heart disease at a later date. A worse pattern of lifestyle characteristics and increased stress could reasonably be associated with either acute or chronic effects on the heart. Whether the presumed effects are acute or chronic, they may be more easily observed in younger men, during working ages, simply because single risk factors for heart disease are more easily detected at younger ages before a large number of risk factors begin to cause much higher heart disease rates.106 On the other hand, if the effects were chronic, they might not become apparent until older ages and perhaps not until after workers had left the workplace.

METHODOLOGIC ISSUES IN STUDYING SHIFT WORK AND HEART DISEASE

As a general recommendation, in light of the potential for a long lag period between shift work and overt CV disease, studies should include followup of workers after leaving work. Analyses should pay careful attention to different possible lag times between the beginning of shift work and observable heart disease. Assuming some appreciable lag, studies restricted to workers currently employed might more profitably focus on the development of intermediate CV risk factors (e.g., blood pressure, cholesterol) rather than manifest CV disease (which in many cases will cause the worker to leave the workforce). However, cross-sectional studies of intermediate risk factors among the currently employed are limited due to the usual problem of determining temporal sequence, so longitudinal studies with baseline measures before shift work would be far preferable.
There are several additional aspects of shift work that potentially complicate any epidemiologic study of its relation to heart disease. Shift workers may be a select population, and it may be difficult to find a comparable reference population of day workers. Shift workers may be selected into shift work because they are healthier to begin with and the employer believes they are better adapted to shift work. However, the opposite scenario is also possible—shift workers may already have an unhealthy lifestyle and, therefore, may be willing to work irregular hours because they won't suffer any lifestyle change. There are few data on this issue. McNamee, et al. found a significantly reduced risk of ischemic heart disease in the first 10 years after starting shift work, which then was no longer apparent, suggesting an initial selection of shift workers for good health.172 Knutsson and Akerstedt studied 53 men who applied for day work or shift work and found that the applicants for shift work were more accustomed to irregular sleep patterns, but there were no differences in traditional CV risk factors.235

In addition to selection into shift work for health-related reasons, shift workers may have unhealthier lifestyles and lower educational backgrounds than day workers, biasing upwards studies of heart disease. Such biases are minimized if one compares workers to workers, making the same general social class likely, especially if they are in the same workplace. This potential bias is more of a concern in broad-based studies such as population-based case-control studies including many social classes, or in cohort studies including subjects from many different workplaces.

There is reasonable evidence that some percentage of new shift workers switch back to day work because they cannot tolerate shift work. Harma, et al. provide evidence that 20% of shift workers switch back to day work within a year due to intolerance of shift work.93 Koller reports cross-sectional data indicating 22% of workers with a history of shift work had abandoned shift work due to health or family problems.146 Akerstedt, et al. cite evidence from Sweden in the 1940s that approximately 10% of workers with a history of shift work had transferred back to day work for health reasons within 10 years.2 Angersbach, et al. report in a study of 600 workers that 11% had switched from shift work to day work, two-thirds of whom did so for health reasons.11 These same authors found a higher prevalence of health problems in these workers who had dropped out of shift work, compared with day workers or workers who had stayed in shiftwork. McNamee, et al. found an increased risk of heart disease death in the first 5 years after a shift worker switched back to day work (odds ratio 2.69 [1.04–6.96]).172 On the other hand, Bøggild, et al. found no increased risk for shift workers who switched back to day work.26 Nachreiner has provided an overview of the recent literature on workers’ tolerance of shift work.182

The phenomenon of workers, particularly unhealthier workers, switching back from shift work to day work is an example of a healthy shift-worker survivor bias, which tends to create a bias towards the null in studies of shiftwork and CV disease. This potential bias is particularly important in prevalence studies comparing shift workers to non-shift workers, and in longitudinal studies that seek a trend in risk with shift work duration rather than compare those ever employed in shift work to those never employed in shift work.

While the healthy shift-worker survivor bias concerns workers switching from shift work to day work, there is also the more general problem of the healthy worker survivor bias, which refers to the tendency of sick workers to leave the workforce altogether. Heart disease is a serious illness that often results in the removal of workers from the workplace. One approach, when comparing shift workers to day workers, is to compare illness or mortality rates when both groups are working or when both groups are not working.
It is difficult to summarize these possible biases to say that the overall “net” likely bias is negative or positive. Judgement of the likely sum effect of such biases depends on study design and can best be done for each study individually.

Epidemiologic Studies of Shift Work

Cardiovascular Risk Factors. Disruption of circadian rhythms, poor lifestyle, and increased stress presumably operate via a worse profile of CV risk factors among shift workers versus day workers. However, the healthy shift-worker survivor bias and the healthy worker survivor bias might make it more difficult to observe such a worse profile, particularly in prevalence studies. The data on CV risk factors as shown in Table 1 do not indicate a consistently worse profile of risk factors among shift workers. Almost all of these studies are cross-sectional, assessing the prevalence of risk factors at a given point in time. Shift work is defined in these studies by either current status as a shift worker or by a history of shift work. Some studies excluded day workers who had ever been shift workers, but most did not, thereby allowing a possible healthy shift-worker survivor bias.

Blood pressure usually exhibits a trough at night and peak during the day. The study by Baumgart, et al. listed in Table 1 shows that shift workers rapidly alter this pattern and exhibit a peak at night while working; other investigators have duplicated these findings. However, most studies do not indicate that shift workers have a higher mean blood pressure, which would be expected to lead to more heart disease (an exception is the study by Prunier-Poulaire, et al., but it is somewhat suspect due to a small day worker referent group that was doing a different kind of job, and the fact that 18 of 21 self-reported health conditions were significantly worse in shift workers, suggesting a possible selection bias). It is possible that a different diurnal pattern of blood pressure troughs and peaks could increase risk of heart disease, but this is currently unknown.

The lack of consistent prevalence findings of more CV risk factors does not strengthen the case that shift work increases CV risk, but neither does it fatally weaken it. First, the evidence is not totally negative; second, the healthy worker biases may play a role in negative studies. Even if a consistent profile of worse CV risk factors (either lifestyle factors such as smoking or physiologic measures such as blood pressure) was found among shift workers in prevalence studies, the question would still be open as to whether shift work was directly responsible for the increased prevalence of risk factors or simply associated with such factors. In the former case, shift work would truly be a cause of CV disease, and epidemiologic analyses would not control for risk factors because they would be intermediate variables on a causal pathway. In the latter case, shift work might or might not be a true cause of heart disease, but if it were, it would not operate via causing an increase in known risk factors. Thus, epidemiologic analyses would have to control for known risk factors because they would be considered confounding variables. This problem—whether known risk factors for an outcome should be considered intermediate or confounding variables—is a common one in epidemiologic studies. Adequate studies to sort out this problem require a longitudinal design in which shift workers and day workers are studied at baseline and then followed to determine whether CV risk factors develop preferentially in shift workers.

Cardiovascular Disease. The principal epidemiologic studies comparing CV mortality or incidence among shift workers and day workers or non-shift workers are listed in Table 2. The focus is on studies of rotating shift workers. There is only one study of permanent shift workers in the literature; this study focused on fatal
WORKPLACE FACTORS AND CVD OUTCOMES

TABLE 1. Selected Recent Studies of Cardiovascular Risk Factors in Shift Workers*

<table>
<thead>
<tr>
<th>Study†</th>
<th>Population</th>
<th>Design</th>
<th>Findings, Shift Versus Day Work; Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nakamura, et al. 1999</td>
<td>66 male Japanese blue-collar shift workers, 239 day workers, same plant</td>
<td>Prevalence data measured in annual health checkup</td>
<td>Workers rotating 3 shifts, but not those rotating 2 shifts, had significantly higher cholesterol and obesity than day workers</td>
</tr>
<tr>
<td>Frasier-Pouilmaire, et al. (1998)</td>
<td>French custom officials, 262 shift workers, 40 day workers working in airplanes</td>
<td>Prevalence data, self-reported high blood pressure</td>
<td>Older workers with more rotating shifts reported significantly higher blood pressure; however, they also reported significantly increased health problems for 16 of other 19 health conditions</td>
</tr>
<tr>
<td>Knutsen and Nilsson 1998</td>
<td>Sample of 2548 men and 2836 women from 1990 Swedish census, 17% shiftworkers or nightworkers</td>
<td>Prevalence data on current smoking</td>
<td>More current smoking for shift or night workers, odds ratio 1.3 (1.1–1.6), controlling for age, stress, sex</td>
</tr>
<tr>
<td>Tenkanen, et al. 1997</td>
<td>1806 Finnish workers (564 shift workers) in several industries, age 40–55 in 1982</td>
<td>Prevalence data in 1982 for risk factors, shift work as of 1982</td>
<td>No differences in smoking, alcohol, obesity, physical activity, or cholesterol; more reported stress</td>
</tr>
<tr>
<td>Lasfargues, et al. 1996</td>
<td>676 male and 524 female night workers vs. pair-matched controls, both from 150,000 volunteers for health checkup in France, aged 30–50, 1991–3</td>
<td>Prevalence data, matching on broad socioeconomic strata (manual worker, clerical, manager), age, and sex</td>
<td>No difference in blood pressure, alcohol, self-reported health status. Cholesterol significantly lower in male night workers. Significantly higher triglycerides, smoking, obesity, WBC, sleep problems in night workers. Not clear whether night workers rotated shifts.</td>
</tr>
<tr>
<td>Skipper et al. 1990</td>
<td>464 U.S. nurses, 54% rotating shifts, 23% days, 12% evenings or nights</td>
<td>Self-reported 1988 prevalence data, age-adjusted, shift work as of 1988</td>
<td>No differences between rotating shift workers and others for physical or mental health, except increased stress for rotating shifters</td>
</tr>
<tr>
<td>Romon, et al. 1992</td>
<td>71 French shift workers with more than one year vs. 70 age-matched day workers with no past shift work</td>
<td>Prevalence data, measured in 1988</td>
<td>Higher triglycerides, less alcohol, no difference in cholesterol obesity, cigarettes, blood pressure, nutrients</td>
</tr>
<tr>
<td>Kautsson, et al. 1990</td>
<td>12 shift workers, 13 day workers, Swedish paper mill</td>
<td>Prospective over 6 months, shift work as of time of study</td>
<td>No difference in change in lipids or blood pressure over 6 months</td>
</tr>
<tr>
<td>Burney 1990</td>
<td>57 English shift workers (> 5 yr), 57 day workers over 40 (never shift work)</td>
<td>Prevalence data measured at time of study, matching on age, cigarettes, blue-collar status</td>
<td>No difference in obesity, blood pressure, cholesterol, EKG</td>
</tr>
</tbody>
</table>

Table continued on next page.
TABLE 1. Selected Recent Studies of Cardiovascular Risk Factors in Shift Workers* (Cont).

<table>
<thead>
<tr>
<th>Study†</th>
<th>Population</th>
<th>Design</th>
<th>Findings, Shift Versus Day Work; Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baumgart, et al. 1989</td>
<td>17 English shift workers serving as their own controls</td>
<td>Continuous blood pressure measured morning and night shifts</td>
<td>No difference in mean blood pressure between night and day shifts; evidence of a 8-hour lag in the diurnal variation of blood pressure as soon as night work began</td>
</tr>
<tr>
<td>Costa, et al. 1990</td>
<td>158 toll collectors night or shift work vs. 44 day workers, same company, aged 35 or older</td>
<td>Prevalence data</td>
<td>No difference in cholesterol, obesity, blood pressure, triglycerides unadjusted for age, no difference in summary measure of cardiovascular risk factors after age adjustment</td>
</tr>
<tr>
<td>Knutsson, et al. 1988</td>
<td>361 shift workers, 240 day workers, blue-collar workers at 3 Swedish plants</td>
<td>Prevalence data measured 1975–1976, shift work as of time of study</td>
<td>More smoking, higher triglycerides, no differences in age, cholesterol, obesity, blood pressure</td>
</tr>
</tbody>
</table>

* For a more complete review of such studies, including non-English publications, see reference 23.
† McNamee et al. 1996 omitted because of lack of age-adjusted data.

Heart disease while working (assuming an acute effect) and showed no harmful effects of evening or night work.246

The data in Table 2 are rather sparse, and the results are not consistent. Four studies show a significant increase in CV disease for shift workers, while four do not. The 1997 study by Tenkanen, et al. is one of the strongest because it was done within a clinical trial and had good data on heart disease risk factors and outcomes (data were analyzed with and without treated subjects, to make sure results were not confounded by drug treatment).256 Subjects worked at a variety of workplaces and represented different social classes (restriction of the data to blue-collar workers lowered the relative risk about 25%, indicating some confounding by social class). Overall, analyses indicated that the excess risk shown by shift workers (approximately 40%, borderline significant) was not much affected by adjustment for risk factors such as blood pressure, cholesterol, smoking, or occupational stress. This finding suggests that shift work does cause heart disease, but not via an increase in prevalence of any known or suspected risk factors (e.g., occupational stress), at least as measured in this study. Indeed, Tenkanen, et al. hypothesize another mechanism possibly related to both stress and circadian rhythms—an alteration of fibrinolysis among shift workers. They provide some data showing that the heart disease risk of shift workers versus day workers was somewhat less for those who were taking gemfibrozil as part of a clinical trial. (Gemfibrozil is a lipid-lowering drug that subsequently was found to increase fibrinolysis.) In a followup paper, Tenkanen, et al. found that higher relative risks occurred for shift workers who smoked, suggesting an interaction.253 However, they did not provide a test of significance for this interaction.
Table 2. Studies of Shift-Work and Cardiovascular Disease*

<table>
<thead>
<tr>
<th>Study†</th>
<th>Population</th>
<th>Design</th>
<th>Findings, Shift Versus Day Work; Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bøggild, et al. 1999</td>
<td>5249 men aged 40–59 in 1971, from 14 companies</td>
<td>Cohort study with 22-yr followup, fatal/non-fatal IHD</td>
<td>RR 1.0 (0.9–1.2) for shift workers, control for most risk factors</td>
</tr>
<tr>
<td>Knutsson, et al. 1999</td>
<td>2006 cases first myocardial infarction, 2642 controls</td>
<td>Population based case-control study</td>
<td>RR 1.3 (1.1–1.6) for men and RR 1.3 (0.9–1.8) for women for shift work in last 5 years. Control for smoking, education</td>
</tr>
<tr>
<td>Tenkanen, et al. 1997</td>
<td>1806 Finnish workers (364 shift workers in several industries, age 40–55 in 1982, generally long-term shift workers)</td>
<td>Cohort study with 6-yr followup, IHD, (ICD 410-414) via death or hospital discharge</td>
<td>RR for IHD 1.4 (1.0–1.9), adjustment for cigarette, lipids, blood pressure, obesity, alcohol, job strain. No analysis by duration of shift work</td>
</tr>
<tr>
<td>McNamara, et al. 1996</td>
<td>Male manual workers at single plant, age < 50 when first employed between 1950–1992, 467 JHD deaths as per death certificate, 467 controls</td>
<td>Nested case-control study, shift work based on personnel records, any history > 1 mo (2/3 exposed)</td>
<td>OR 0.5 (0.3–0.8) in first 10 years after shift work began, OR 0.9 (0.7–1.2) thereafter. No trend with duration of shift work; control for HR, smoking, job status, obesity measured before employment</td>
</tr>
<tr>
<td>Kawachi, et al. 1995</td>
<td>79109 female nurses aged 42–67 in 1988, free of IHD, 60% with history of shift work</td>
<td>Cohort study with 4-yr followup, 292 fatal and nonfatal CHD</td>
<td>RR 1.3 (1.0–1.7) for shift work, RR 1.2 (0.9–1.6) for < 6 yr shift work, RR 1.5 (1.1–2.0) for 6 yr. Adjustment for risk factors in 1990 (little effect of adjustment on RR)</td>
</tr>
<tr>
<td>Knutsson, et al. 1986</td>
<td>504 paper mill workers in 1968, 594 shift workers, few ex-shift workers, at a single plant</td>
<td>Cohort study 15-yr followup, 43 cases of IHD (angina or MI)</td>
<td>RR 1.4 (n.s.), increasing risk of IHD with increasing duration of shift work until 20 yrs (RR 2.8, 16–20 yr.), when RR drops possibly due to survivor effect, control over smoking, age</td>
</tr>
<tr>
<td>Angerbach, et al. 1980</td>
<td>210 shift workers, 142 day workers, 41 ex-shift workers, all who stayed employed over 11 years, at a single plant</td>
<td>Followup morbidity study over 1966–77 based on company medical records</td>
<td>No differences in cardiovascular complaints registered in company clinic; study limited by restriction to active workers</td>
</tr>
<tr>
<td>Taylor and Pocock 1972</td>
<td>Male manual workers with 10+ years employment after 1946 and born before 1920, from 10 companies, 4188 shift workers with 10+ years shift work, 3869 day workers with 10+ years day work and < 6 mo shift work, 555 ex-shift workers with 6+ mo shift work</td>
<td>Cohort study with followup through 1968, 444 CHD deaths, comparison to general population via SMRs</td>
<td>SMR 0.9 (0.8–1.1) for day workers, 1.0 (0.9–1.2) for shift workers, 1.2 (0.9–1.7) for ex-shift workers</td>
</tr>
</tbody>
</table>

* Cross-sectional studies are omitted. † Three studies potentially relevant to rotating shift workers are omitted (Alfredson, et al. 1982, Alfredson, et al. 1985, Tuchsen 1993) because they are not based on a well-defined population of shift workers. The exposure variable in these three studies is defined as work in an occupation presumed to involve more frequent shift work than other occupations. These studies all show some increase in mortality among workers in jobs presumed to involve more shift work. However, the imprecision of the definition of shift work and the possibility of confounders related to occupation make these studies of less value than the ones listed. (IHD = ischemic heart disease, ICD = ischemic coronary disease, CHD = coronary heart disease, MI = myocardial infarction)
The study by Kawachi, et al. of U.S. nurses is a second well-designed study with a positive result (RR = 1.31, 95% CI 1.02–1.68). Adjustment for traditional risk factors generally did not change results much, again suggesting that any shift work effect is not mediated through the risk factors usually considered for heart disease, although in this study only self-reported data on risk factors was available. A significant trend of increased risk with increasing duration of rotating shift work was shown. There is no suggestion in the data that those who left shift work shortly after entering it (the “drop-outs”) had a higher heart disease risk. This could be because few nurses were able to switch back to day work, even if they had health problems.

The third positive study, by Knutsson, et al., is a smaller study without extensive control over conventional CV risk factors. It is consistent with the Kawachi, et al. study in that there is an overall excess risk of about 40% for shift workers, and a significant increasing trend in risk with increasing duration of shift work, at least until 20 years. Employees who have been shift workers for more than 20 years show a decreased risk, which the authors interpret as a survivor effect—shift workers who survive more than 20 years are a particularly hardy group unaffected by heart disease. However, no such survivor effect was seen in the Kawachi, et al. study.

The fourth positive study, also by Knutsson, et al. is unusual in that it is a population-based case-control study in which shift work in the last five years was determined by interview. Shift work (14–15% did shift work, about the same for men and women) in this study is not rotating shifts per se, but includes those reporting night work (about 3–4% did night work). The limited time window for shift work and the lack of detailed information on the reported shift work are limitations in this study. The categorization of exposed (shift work) versus nonexposed is likely to be less precise than in cohort studies; this fact would ordinarily bias findings towards the null. Nonetheless, a modest but significant relative risk of 1.3 was found for both men and women. Adjustment for self-reported job strain did not change the findings, nor was there any interaction with the job strain variable. The principal concern in this study is possible upward bias in the odds ratio due to uncontrolled confounding. Shift workers were of lower socioeconomic class than non-shift workers, and smoked more. Education and smoking (current, former, never) were controlled in the analysis, but residual confounding by social class may have occurred, and there was no control for risk factors such as obesity, blood pressure, and cholesterol. While it could be argued that these last factors might be intermediate variables which should not be included in the model, this case has not been proved, and it is at least equally plausible that these variables act as confounders.

The four remaining studies in Table 2, in contrast, are largely negative. There are no obvious flaws in the designs of the studies by Bøggild, et al., McNamme, et al., and Taylor and Pocock to explain why they are negative. The Bøggild, et al. study is one of the better analyses overall, as it is a cohort study with good baseline data on possible confounders, some validation data indicating that self-reported data on shift work were reasonably accurate, and a recount of 75% of the cohort 15 years after baseline to again ascertain shift-work status. Workers worked in 14 different companies and came from different social classes. Although workers with any night work are mixed with rotating shift workers, evidence presented suggests that most shift workers rotated. There is no suggestion of any excess risk for shift workers in this study, with or without controlling for traditional risk factors. There is some evidence in these data that inadequate control over social class, in studies with heterogeneous populations of workers, might be an important confounder in shift-work studies.
The McNamee, et al. study was done in a workforce at a single plant. This study showed no effect overall of shift work, nor with duration of shift work (in contrast to Kawachi, et al. 1995 and Knutsson, et al. 1986). McNamee, et al. conducted a number of time-specific analyses, including analyses by years since beginning shift work; the latter revealed a significant excess risk for ex-shift workers shortly after leaving shift work (odds ratio 2.69, 1.04–6.96, 14 cases, 6 controls) compared to day workers. However, this finding may have been a reflection of sick workers leaving employment rather than a health effect specific to shift work.

The Taylor and Pocock study is an older study that is limited by the lack of a direct comparison between shift workers and day workers (all groups are compared to the general population), but which is based on large numbers and had a good division of workers between long-term shift workers, day workers, and ex-shift workers. Despite the lack of a direct comparison between worker groups, this study can be considered negative. There is an interesting finding of a modest excess for shift workers under 60 years of age, but the authors state that this is largely due to one particular company and that there may be additional reasons (not specified) why young workers at this company might have high heart disease rates.

The final study in this group, by Angersbach, et al., is a morbidity study based on company medical records and restricted to workers who remained employed during an 11-year period. This is an important limitation in so much as the effects of shift work on the heart might cause workers to leave employment, or might first occur only after employment, so this study must be given less weight than the others. A similar study of illness among active workers was conducted, but it did not report CV disease separately.

SUMMARY OF EPIDEMIOLOGIC EVIDENCE FOR HEART DISEASE–SHIFT WORK LINK

Taken as a whole, the epidemiologic data suggest that a modest association between shift work and heart disease may exist. There are plausible biological mechanisms (via disruption of circadian rhythms) by which shift work could result in heart disease. However, the epidemiologic studies are still relatively few in number, and they are not consistent. Therefore a causal relationship between shift work and heart disease cannot be inferred. It is a difficult subject to study epidemiologically, and we must wait for additional data before drawing more definitive conclusions.

Those studies that do show a shift work effect do not suggest that this effect is mediated by changes in conventional heart disease risk factors; however, these risk factors may not have been well measured or may not have been the true risk factors of interest. Furthermore, there may be effects of shift work on the CV system that are not well understood and are not well explained by the current proposed mechanisms. There is some evidence of selection biases operating that could bias findings towards the null, but there is other evidence that some positive findings in general populations may have been confounded positively by social class.

REGULATIONS CONCERNING SHIFT WORK

Kogi recently reviewed international regulations on the organization of work, principally the recommendations of the International Labor Organization (ILO) dating from 1990, and the directive of the European Council of 1993 which (at least in theory) must be enforced within the European Economic Community. These regulations apply more generally to all work organization, but a number of points are directly relevant to shift work. The ILO recommendations call for: (1) advice to the
worker at regular intervals on how to cope with shift work, (2) transfer to a similar
day job when the worker is found unfit for shift work, (3) special compensation for
shift work, (4) consultation between worker and employer on the details of the shift
work, and (5) at least 11 hours rest in each 24-hour period (no consecutive full-time
shifts). The European directive is similar. It calls for: (1) a minimum daily rest
period of 11 hours in a 24-hour period, (2) a rest period of at least 35 consecutive
hours per 7-day period, (3) maximum of 48 work hours per week, and (4) transfer to
day work when problems with night work are recognized.

In the U.S. there are no general regulations covering shift work, although there
are some regulations for particular sets of transportation workers (pilots, truck dri-
vers, and railroad workers). The U.S. National Institute for Occupational Safety and
Health has published guidelines for shift work.

Overtime Work and Heart Disease

Overtime work is commonly thought to be stressful and fatiguing and may be
correlated with sleep deprivation, thereby involving two of the same mechanisms
hypothesized for heart disease and shift work. There are data indicating that, in gen-
eral, being at work (versus not being at work) increases blood pressure, so that
longer working hours implies more time with increased blood pressure. Finally,
there are more recent data indicating that long hours of overtime may increase aver-
age blood pressure as measured over 24 hours. One model for an effect of long hours
on heart disease suggests that this increased blood pressure contributes to an acute
myocardial infarction.

Studies of long hours and heart disease involve many of the same methodologic
issues as studies of shift work and heart disease; it is important to compare popula-
tions of workers that are as similar as possible with respect to potential confounders
to avoid selection biases, and longitudinal studies with careful attention to temporal
sequence of exposure are preferred.

Overtime work as a risk factor for heart disease is difficult to separate from the
more general literature regarding stress, since overtime work generally is considered
stressful. There are a few early studies suggesting that long working hours are
among the stressful factors that increase the risk of heart disease. More re-
cently, Fager and Shouten studied cases of male acute myocardial infarction versus
hospital and neighborhood controls. With hospital controls (but not neighborhood
controls), they found that self-reported prolonged overtime (time period not defined)
caulated a significant two-fold excess risk for acute myocardial infarction after con-
trolling for smoking, age, education, and self-reported exhaustion. The focus in
these studies has been more on stress rather than on overtime work per se.

There are two other studies in which working long hours is inferred for study
subjects based on occupational category, using ancillary surveys of work habits by
different occupations. These studies can provide only indirect evidence and are
not reviewed here.

The most important studies to date attempt to separate the independent ef-
fects of long hours and stress, either by explicit attempts to measure both these
variables and by matching, or by quantitatively measuring hours worked. Two of the studies concern long hours and blood pressure, while one is a case-
control study of long hours and myocardial infarction. All three come from Japan,
where working long hours is common and where death from overwork, or
"Karoshi," is a publicly recognized phenomenon, despite the lack of formal epi-
demiologic evidence.
Hayashi, et al. studied 10 normotensive men working long hours (more than 60 hours overtime a month) and 11 normotensive controls (less than 30 hours overtime a month) (Group A). Blood pressure was recorded during a routine checkup. Investigators also studied 15 exposed men and 11 controls who had mild hypertension (group B), as well as a group of normotensive men whose hours varied between heavy overtime and light overtime (group C). Groups A, B, and C all worked for the same company, and group C members worked in the same department; exposed and controls were similar with respect to age, body mass, and smoking habits. Hourly blood pressure, recorded over a month and averaged, showed significantly higher blood pressure for the exposed versus controls in groups A and B. Group C, perhaps the most interesting because it was studied longitudinally and avoided potential confounding (subjects were their own controls), showed a significant increase in blood pressure (diastolic and systolic) and a significant decrease in sleep when working more overtime (average 96 hours/month, versus 43 hours/month during the control period).

Iwasaki, et al. studied systolic blood pressure among 71 salesmen in the same company divided into two groups by length of work week in the previous month. Based on a single blood pressure measurement, the group with more hours (65 hours/week) had higher systolic blood pressure for one age group (age 50–59) than did the group with shorter working hours (57 hours/week), despite the fact that the difference in hours worked was not extreme. Smoking and body mass were comparable between exposed and nonexposed. This study provides only weak evidence of an exposure effect due to its cross-sectional nature, the possibility of confounding, and reliance on a single blood pressure measurement.

In the most thorough study to date, Sokejima and Kagemimori compared 195 Japanese survivors of first heart attacks to 331 controls who were free of heart disease and matched by age and occupation to the patients. Controls were chosen via lists of workers who had had yearly routine medical exams. Occupational matching was by eight broad occupational categories. Data on medical history, blood pressure, cholesterol, glucose tolerance, body mass, and smoking habits were obtained for both cases and controls, as were data on psychosocial conditions at work and time spent in sedentary work. The last two factors were not associated with heart disease in the analysis, while the former, more established risk factors were. Working hours in the month before infarction or interview (for controls) did not differ between cases and controls (average 9.2 hours). However, when the data were categorized, patients had significantly increased likelihood of having worked either short or long hours in the previous month (either > 11 hours on the average, or < 7) compared to controls, suggesting a U-shaped relationship between working hours and heart disease. The authors speculated that the increase in risk for those with short working hours might have been due to these subjects suffering from early disease (and therefore working less), or from a protective effect of working a full work day. The authors also found that there was a significant trend of increasing risk of infarction with a larger increase in working hours during the year prior to infarction, so that a change towards longer working hours increased risk. This finding is consistent with a postulated increase in blood pressure contributing to a heart attack.

In summary, although the literature is sparse, there is some suggestion that long hours can increase blood pressure and lead to increased heart disease, independent of other stressful conditions at work. These findings must be viewed as preliminary, but are intriguing enough to warrant more studies on overtime work and heart disease.
CHEMICAL AND PHYSICAL FACTORS by Larry Fine, MD, PhD

Recently, much of the interest in the relationship between work and cardiovascular disease (CVD) has focused on psychosocial factors. However, there are a host of occupational chemical and physical factors that have been studied to investigate their possible relationship to CVD. Some of these exposures, such as cold weather, noise, and passive smoking, are common.

Cold Weather
Several epidemiologic studies have observed a definite relationship between environmental exposure to temperature below 18°C and small increases in the acute mortality from coronary artery disease (CAD) and CVD in individuals older than 50 years. These increases in risk of death from cold exposures in Europe occurred to a greater degree in regions with warmer winters, in populations with cooler homes, and among people who wore fewer clothes and were less active outdoors. In a large study of 50- to 69-year-old men in London between 1986 and 1992, it was found that cold exposures of normal life are sufficient to induce prolonged hemoconcentration and increases in both systolic and diastolic blood pressure (BP). These changes occurred on the first cold day and persisted for a few days. The increases in mortality appear preventable by adequate indoor heating and adequate protection against cold while outdoors.

In a study of the population of Yakutsk, which has extremely cold winters with mean October to March temperatures of −27°C, mortality from CVD and CAD among individuals 50–59 years old did not change. In comparison to other Siberian cities, this lack of mortality associated with cold stress seemed to result from the wearing of exceptionally warm clothing and the reduction of outdoor excursions at temperatures below −20°C. These studies suggest that colder workers who have regular or intermittent outdoor exposure in the winter may be at a slightly increased risk of mortality from CVD and CAD; however, the excess risk seems to be prevented by adequate clothing (e.g., overcoats, gloves, and hats) and opportunities to rest in warm indoor environments. The mortality of older workers with outdoor exposures is an area for future study.

The relationship between mortality and cold exposure may be of interest in climates with mild winters, since the effects observed in Europe are seen in, for example, Italy and Greece. In addition, studies of cold temperatures may be of interest even in workers with exposure below 20°C, whether indoors or outdoors. ST-segment depression with or without anginal symptoms during ambulatory electrocardiographic monitoring is suggestive of transient myocardial ischemia. Results from the CORDIS study found significant increases in the rate of silent ST-segment depression among women workers working at ambient temperatures lower than 20°C after adjusting for possible confounding factors such as age, type of work, smoking, and relative weight. It seems biologically plausible that sudden exposure to cold could induce coronary artery spasm, since the cold pressor test can provoke abnormalities of myocardial perfusion not only in patients with structural coronary disease or variant angina, but also normal subjects.

Heat Exposures and Warm Weather
Acute myocardial infarction (MI) may occur (although rarely) after severe heat exhaustion or heat stroke, as they are associated with widespread tissue injury. The risk of acute ischemia with heat stroke or heat exhaustion in working populations is unknown. In a study of Hajj pilgrims suffering from heat stroke, 21% had localized
This number was based on an estimated prevalence of unrestricted smoking in U.S. office workplaces of 28%. In some workplaces with particularly high levels of exposure to passive smoking, such as casinos, CAD risk may be even greater. Environmental sampling was performed to evaluate occupational exposure to ETS among casino employees. The geometric mean serum cotinine level of the 27 participants who provided serum samples was 1.34 nanograms per milliliter (ng/ml) pre-shift, and 1.85 ng/ml post-shift. Both measurements exceeded the geometric mean value of 0.65 ng/ml for participants in the third National Health and Nutrition Examination Survey (NHANES III) who reported exposure to ETS at work. This evaluation demonstrates that a sample of employees working in a casino gaming area were exposed to ETS at levels greater than those observed in a representative sample of the U.S. population, and that the serum and urine cotinine of these employees increased during the working shift. The number of these high-exposure environments in the U.S. is unknown.

Physical Exercise and Vibration

Numerous studies consistently find that higher levels of physical activity, whether at work or leisure, are associated with lower risks of CAD and CVD. The biological processes proposed to explain the beneficial effect of higher levels of physical activity are very plausible. Because of the negative effect of a lack of physical activity, sedentary work can be viewed as an occupational risk factor for CAD. The relative risk of death from CAD is about 2.0 for sedentary compared with active occupations. Unfortunately, the level of physical activity in the population may be on the decline overall because of changes on the job and in transportation.

Uncertainty exists about the level and type of physical activity on the job may be protective. Three specific physical occupational factors have been suggested as possible risk factors. While increasing the level of physical activity is beneficial in preventing CAD, irregular heavy physical exertion (such as 6 or more metabolic equivalents) is associated in most studies with substantially increased risk of an acute MI in the first hour after the exertion. However, while the relative risk is high, the absolute risk is low, and habitual physical activity greatly reduces the risk of heavy physical exertion.

Evidence that lifting may be an occupational risk factor is limited. Associations with lifting may be due to some other confounding factor. However, a significant increase in SMR for MI related to heavy lifting has been found; when combined with hectic work, the risk was even higher. Resistance weight training has been used safely in the rehabilitation of patients with cardiac disease.

Both segmental and whole body exposure to vibration have been postulated to have acute effects on the CV system. Since there are some data supporting this hypothesis, further investigation of this association would be of some interest.

Chemical Exposures and Cardiovascular Disease

A few occupational exposures, such as carbon monoxide, carbon disulfide (CS₂), methylene chloride, and nitrate esters, have been definitely linked to selected CV conditions. The evidence for these exposures is by far the strongest when the level of occupational exposure is high. For some chemicals (e.g., lead, arsenic, and 2,3,7,8-tetrachlorodibenzo-p-dioxin) evidence is more limited or substantial occupational exposures are less common. Low-level exposures to carbon monoxide, lead, and carbon disulfide are common.
ST-T electrocardiographic changes consistent with acute myocardial ischemia. Heat waves in the United States are clearly associated with increase in overall mortality among the elderly. One European study found excessive total daily CV mortality among males between the ages of 45 and 65 when maximum air temperature exceeded 33°C. Heat stroke and exhaustion are certainly acute risk factors for myocardial ischemia in an individual with CAD. For exposures less intense than those that cause heat stroke or exhaustion, the risk of cardiac ischemia in an individual with CAD appears to be related to the magnitude of the heat stress. One epidemiologic study of open-hearth steelworkers did not find an elevated risk of death from CAD. However, a second study of French potash miners concluded that there was an increased risk of CHD from the hot underground mining environment. One possible reason for the negative study is the selection of strong, healthy workers, both at hire and during employment.

Further studies of heat waves to determine if active working adults have elevated mortality patterns and more studies of occupational groups with intermittent exposures to high temperatures would be interesting. Prompt recognition and therapy for heat stroke and heat exhaustion may prevent or limit myocardial ischemia in workers with underlying coronary disease.

Noise
Research on noise exposure and hypertension or elevations in blood pressure has focused on two aspects: objective measures of noise exposure, usually exceeding 80 dB, and duration of exposure. A few studies have defined noise as any exposure that is considered by the exposed worker to be an annoyance. Two recent reviews have reached somewhat different conclusions about the relationship between objectively measured noise exposure and hypertension. Experiments in animals suggest that noise exposure in spontaneously hypertensive rats can increase the number of ischemic myocardial lesions. This issue is not entirely resolved, but there may be a dose-response relationship between noise and hypertension; the importance of duration of exposure has not been clarified. The proponents of a causal relationship between noise and hypertension have noted that the likely increases in BP would result in modest increases (1.1–1.2) in the relative risk for CAD. Overall, there is considerable, if conflicting, evidence that prolonged exposure to high noise levels causes significant, chronic elevation of BP.

A few studies address the effect of noise on other cardiac risks, such as cholesterol. However, the results are not definitive, but raise the hypothesis that noise exposure could affect lipid levels. One interesting and provocative study found a borderline significant relationship in men between transient episodes of ST-depression on ambulatory electrocardiac monitoring and industrial noise exposure. Since noise exposure is still common, further research on the relationship between CVD and chronic, high-level noise exposure is important.

Passive Smoking
A review by Kristensen underlined the importance of passive smoking at work as a risk factor for premature CVD in Denmark. A risk assessment based on measured levels of environmental tobacco smoke (ETS) in office air and salivary cotinine in nonsmoking U.S. workers estimated that 4000 heart disease deaths occurred annually among office workers from occupational exposures to passive smoking.
CARBON DISULFIDE

CS₂ was definitively associated with increased risk of CAD in Finnish epidemiologic studies which showed that higher exposures before 1970 were linked to high relative risks for CAD, and that following substantial reduction in exposure the risk declined to less than 1. Overall, the several other epidemiologic cohort mortality studies strengthen the evidence that CS₂ can cause CAD in workers exposed for long time periods and at high levels. The mechanism may be primarily a direct adverse effect on the CV system, since the risk of dying from heart disease has been largely restricted to currently or recently exposed workers in some of the cohort mortality studies. The importance of this hypothesis is that the adverse effect may be reversible to some extent.

There is some debate about the level of exposure associated with increased risk of CAD. The most recent cohort mortality study concluded that exposure to relatively low levels of CS₂ increases the risk of CV mortality. As with many occupational adverse effects, the precise shape of the dose-response curve between mortality from CAD and exposure to CS₂ remains an important area of research.

CS₂ has been associated with several effects that suggest direct and indirect mechanisms for the increased risk of CAD. Interestingly, in both Belgian and Japanese CS₂ workers, but not Finnish workers, an increased prevalence of microaneurysms of the retinal artery has been reported. Other effects that have been noted are ECG abnormalities, a negative inotropic effect, an increase in LDL-cholesterol, and increased diastolic BP.

NITRATE ESTERS

Nitrate esters such as nitroglycerin (NTG) and ethylene glycol dinitrate (EGDN) caused angina and more rarely cardiac sudden death in highly exposed workers in the past. Following withdrawal from exposure, coronary artery spasm has been postulated as occurring. In the occupational setting, skin exposure to the nitrate esters is the principal route of exposure. In the studies of mortality from CAD in exposed explosives workers, it is not clear whether the effects are solely acute after withdrawal from exposure or also occur during acute overexposure. There are substantial case studies and epidemiologic evidence to confirm this hypothesis of an acute effect of nitrate esters. Only one study found evidence that there may be a chronic effect that persists several years after exposure ceases. This study suggested that CV effects of NTG and EGDN might be more complex than simply the precipitation of coronary spasm after acute withdrawal from exposure. It is possible that the nitrates also lead in some manner to increased diastolic BP, since one study also found, in addition to a chronic increase in CAD mortality, a nonsignificant increase in CVD mortality. Older clinical reports suggested that sudden death rarely occurs in exposed workers without pre-existing CAD. However, Stayner found that workers hired after 1970 who were screened every 6 months for hypertension as well as resting and exercise ECG abnormalities did not have an excess risk of death from NTG exposure. This absence of an effect could be due to a combination of lower exposures and effective screening to identify more high-risk workers. Prospective studies of currently exposed workers are needed to determine whether there is any remaining excess risk.

CARBON MONOXIDE

Substantial exposure to carbon monoxide (CO) is more common than substantial exposure to either nitrate esters or CS₂. CO exerts its adverse effects via its avid binding to hemoglobin, resulting in decreased delivery of oxygen to the tissues.
addition, CO binds to the cytochrome oxidase system in the mitochondria of cardiac muscle, raising the possibility that CO exposure could directly decrease myocardial contractility. A limited number of occupational exposures to CO can result in carboxyhemoglobin levels greater than 25%. When the carboxyhemoglobin level exceeds 25%, the reduction in tissue oxygen delivery can cause myocardial ischemia or infarction, dysehythmias, or even sudden death.28 These high levels of exposure can occur from exposure to combustion sources, such as during fire fighting activities or use of gasoline engines in confined spaces (e.g., gasoline-powered washers for cleaning of flood debris in basements). For example, in one study of structural fire fighting, 10% of the samples exceed 1500 ppm of CO.112

The acute cardiac effects of CO even at low levels of exposure are dependent on the ability of the coronary arteries to increase blood flow to the myocardium in response to the hypoxic stress of CO. Workers with significant CAD may be affected at lower levels of exposure. In addition, CO exposure from workplace combustion sources are additive with the CO exposure that smokers receive from their cigarettes. One study showed that smokers in workplaces with low levels of CO exposure (3–12 ppm), far below the OSHA exposure limit (50 ppm or 55 mg/m³), had carboxyhemoglobin levels of 2.1–7.6%.285 Levels above 4% carboxyhemoglobin have been associated with reduced time to onset of angina during exercise tests.132 Higher workplace exposures, for example at the OSHA recommended exposure limit, could raise the carboxyhemoglobin level of the nonsmoker above 4%. Workers with CAD may have an increased number of angina attacks in occupational environments with CO exposure.

Overall, mortality studies of exposed workers provide some evidence that CO exposure may be associated with an increase in mortality from CAD while the exposure continues. Some of these studies are positive and others are negative.90,141,266 Some of the positive studies involved workers who are exposed to more than one agent. For example, one found a significant increase in mortality from sudden death presumably due to CAD in furnace workers in ferroalloy plants.104 The increase was not explained by smoking or alcohol consumption; however, these workers were exposed to manganese, CO, and heat. Interestingly, two studies have found evidence of an increase in hypertension morbidity or mortality; however, in both studies workers did have multiple exposures.104,141 The latter observation raises the hypothesis that chronic CO exposure could potentiate other CV effects.

One of the few studies with a detailed exposure assessment for CO, no other potential cardiac toxic exposures, and a good internal comparison group is that comparing tunnel workers to toll booth operators.249a The tunnel workers had a 35% increased mortality from CAD. The excess declined after 1970 when the CO levels were reduced by improved ventilation (prior to 1970, levels averaged over 50 ppm). The excess mortality was limited to the first few years after employment ceased.

Overall, the epidemiologic studies do suggest that high-level CO exposure may cause at least moderate increases in the risk of CAD. It is not surprising that studies of the adverse effects of CO in physically active occupations with intermittent exposures, such as fire fighting and foundry work, have had mixed results. Acute exposures in fire fighting or to a combustion source in a confined space and that cause carboxyhemoglobin level above 25% may pose a cardiac hazard even for individuals with a normal CV system, while lower levels of exposure may pose a hazard for individuals with significant CAD. These lower exposures in the individual with CAD would be potentially more hazardous if other factors were present that could increase the risk of cardiac ischemia, such as cigarette smoking, high altitude, or substantial physical exercise.
METHYLENE CHLORIDE

Methylene chloride (dichromethane) is metabolized to CO. Any worker who presents with a clinical picture consistent with CO toxicity and a history of solvent exposure should be evaluated for methylene chloride exposure. Exposures as low as 75 ppm of methylene chloride can produce similar levels of carboxyhemoglobin as exposure to CO at 35 ppm. Methylene chloride has been a common solvent in furniture-stripping solutions. The risk of methylene chloride exposure is related to the duration and intensity of the exposure. Two epidemiologic studies of occupationally exposed chemical workers involved in the production of methylene chloride have not found an association with CAD.

LEAD

Occupational exposures to lead are still common in some industries, such as construction and manufacturing of lead batteries. The identification of subtle subclinical effects of lead at low exposure levels has led to reduction in recommended occupational exposure limits from 80 to 40 micrograms/dL. At these lower levels of exposure it is possible that lead may be contributing to hypertension. This concern was first raised by studies in the general population. One recent review of the animal, epidemiologic occupational, and general population studies concluded that there is a weak positive relationship between both systolic and diastolic BP and lead exposure. A two-fold increase in blood lead concentration was associated with a 1 mm increase in systolic pressure and 0.6 mm increase in diastolic pressure. The reviewers were not sure that the relationship was causal. They believed that there were several possible plausible mechanisms, including interference of lead with calcium metabolism, a possible direct effect of lead on the vascular smooth muscle, or potentiation of sympathic stimulation by lead. The most recent cross-sectional studies of workers are also inconsistent. The issue of whether occupational exposures to lead contribute to hypertension is not totally resolved.

SOLVENTS AND DYSRHYTHMIAS

A limited number of chemicals have been associated with atrial and ventricular dysrhythmias by mechanisms unrelated to ischemia; such events may occur even in individuals with anatomically normal coronary vessels. Some organic solvents, particularly fluorocarbons such as chlorofluorocarbon 113, are implicated in the occupational setting. Suspected proarrhythmic agents are bromofluorocarbons, methyl chloroform, methylene chloride, and trichloroethylene. The strongest evidence for this relationship is from case reports following very high, intentional exposures (e.g., glue sniffing). Other evidence comes from clinical studies and experimental animal investigations. The animal studies suggest that a wide range of solvents at very high levels of exposure are cardiac toxins; however, the risk in usual working situations is probably small.

The pathogenesis of solvent-related dysrhythmias likely involves potentiating the effect of endogenously secreted catecholamines to cause arrhythmias. The combined effect of the solvent and catecholamines results in atrial or ventricular arrhythmias. At very high levels of exposure other mechanisms are possible, such as decreased myocardial contractility or hypoxia from respiratory depression.

There are several case reports of sudden death or atrial fibrillation following exposure to chlorofluorocarbon 113 in confined spaces. The most volatile fluorocarbons are the most hazardous. Epidemiologic studies of workers exposed to fluorocarbons in nonconfined spaces and presumably at lower levels of exposures are not consistent. A positive study found an association between history of episodes of
palpitation among pathology residents and exposure to fluorocarbons in the preparation of frozen sections from surgical specimens.24 A negative study involved ambulatory EKG monitoring and exposure measurements to fluorocarbon-113 in sixteen sedentary aerospace workers. The frequency of ventricular and atrial premature beats and other evidence of dysrhythmias on a low exposure day (64 ppm personal time-weighted average [TWA]) were compared to a higher exposure day (442 ppm TWA).52 There is also an equivocal study among refrigerator repairmen.51

In summary, occupational exposures to fluorocarbon-113 at levels below the OSHA standard of 1000 ppm have not been associated with cardiac dysrhythmias.

Several epidemiologic mortality studies of solvent-exposed workers have been conducted, principally in aerospace, rubber, chemical, and dry cleaning industries. Each of these studies has limitations in determining if there is an association between acute solvent exposure and cardiac mortality. Most were designed to concentrate on the relationship between chronic solvent exposure and cancer rather than acute exposure and CVD. The majority of cardiac deaths occurred years after exposure ceased. Most did not have detailed exposure measurements; therefore, the potential for misclassification of exposure is substantial. A review of the epidemiologic literature shows no consistent association between solvents, with the exception of CS\textsubscript{2}, and elevated risks of mortality from heart disease.206

A few studies do indicate one or more positive associations. A case-control study in the rubber industry found no evidence of association between the most solvent exposures and heart disease, but did find limited evidence of an association between ethanol or phenol exposure and mortality from CAD.207 A recent cross-sectional study reported associations between occupational exposures to benzene or xylene, but not to phenol, and the prevalence of hypertension, atrial, and ventricular ectopic beats.142 A significant but slight increase in mortality from CAD was reported among aerospace workers exposed to trichloroethylene or toluene.22 This study had an internal reference group and careful exposure assessment. The 10–20\% increases in this study generally were not dose related, and there were overlapping exposures to several solvents. In another study of trichloroethylene there was no evidence of an increased risk from CV mortality in the workers with long duration or higher levels of exposure.13

PSYCHOSOCIAL FACTORS: REVIEW OF THE EMPIRICAL DATA AMONG MEN by Karen Belkić, MD, PhD, Paul Landsbergis, PhD, Peter Schnall, MD, Dean Baker, MD, Töres Theorell, MD, PhD, Johannes Siegrist, PhD, Richard Peter, PhD, and Robert Karasek, PhD

In 1958, a case-control study by Russek and Zohman revealed that of 97 male coronary patients under age 40, 91\% were judged to have been exposed to “occupational stress and strain,” based on a detailed occupational history, compared to 20\% of healthy controls.224 In the same year, Friedman, Rosenman and Carroll published their seminal paper demonstrating a significant relation between serum cholesterol and blood clotting times, and cyclic variation in occupational stress among accountants.26 Since these early studies there has been a burgeoning body of evidence demonstrating a relationship between psychosocial factors at the workplace and cardiovascular disease (CVD).

Approximately 20 years ago, the Job Strain Model was introduced by Karasek.222 Systematic investigation of psychosocial workplace factors and CVD was dramatically advanced by this model, which can be readily applied in epidemiologic studies. The first hypothesis is that strain occurs when there is excessive psychological...
workload demands together with low job decision latitude. This combination provokes arousal, as well as distress, activating both the sympathetic and adrenocortical axes, and yielding a highly deleterious combination. A third dimension, social isolation, was later added to the Job Strain Model. The second hypothesis is that high demands together with high decision latitude lead to active learning of new behaviors, and possibly improved health through long-term positive changes in coping behaviors. (See Chapter 3 for a detailed discussion of the theoretical construct.)

More recently, the Effort-Reward Imbalance (ERI) Model was introduced by Siegrist and colleagues. In comparison to the Job Strain Model with its emphasis on moment-to-moment control over the work process (i.e., decision latitude), the ERI Model provides an expanded concept of control, emphasizing macro-level long-term control vis-à-vis rewards such as career opportunities, job security, esteem, and income. The ERI Model assesses the balance between these rewards and effort, positing that work stress results from an imbalance between high effort and low control over long-term rewards. Effort is seen to stem both extrinsically from the demands of the job and intrinsically from the individual’s tendency to be overly committed to these work demands. (See Chapter 3 for further discussion.) In addition to research using these two models, several other psychosocial risk factors are being examined for their potential explanatory value with regard to CV outcomes. Threat-avoidant vigilant work, also termed “disaster potential,” represents a plausible construct for which there is some empirical data, reviewed herein.

The following review results from in extenso English language publications in peer-reviewed journals as these pertain to samples of men, in whom the majority of this research has been conducted. The empirical evidence with regard to workplace psychosocial factors and CVD outcomes among women is described toward the end of this chapter.

The Job Strain Model

Ischemic Heart Disease and other Hard CVD Endpoints

Table 3 presents the data concerning exposure to job strain and/or its major dimensions, in relation to ischemic heart disease or other hard CVD endpoints. A brief description of how the job strain variable was assessed in each study, the variables for which adjustment is made, and significant positive as well as null and negative findings are shown. (For more details concerning methods for evaluating job strain and other psychosocial workplace factors, see Chapter 6.)

There were eight case-control studies of job strain and CVD. Those investigations which obviated self-report bias by imputing job strain exposure on the basis of occupational title revealed major significant findings with regard to aspects of control and/or to exposure to high psychological demands together with low control. The other five studies, relying on self-report data, also revealed primarily significant positive associations. An exception is the very small study of Emad, et al., which, unlike the others, restricted itself to a single occupational group (professional drivers) having a limited range of variation on demands and control, and, thus, less statistical power to detect an effect of job strain.

Self-report data of Hallqvist, et al. provided another important facet of causal evidence by showing a dose-response relationship between strength of exposure to job strain and relative risk of myocardial infarction. The significant, positive Synergy Index reveals that exposure to the combination of high demands and low control confers greater risk than the additive effects of the dimensions.
TABLE 3. Studies of Job Strain and Ischemic Heart Disease among Men

<table>
<thead>
<tr>
<th>First Author (Year)</th>
<th>Study Participants</th>
<th>Form(s) of Job Strain Variable</th>
<th>Illness Outcome</th>
<th>Significant Positive Associations (Adjusted Confounders)</th>
<th>Null or Sig. Negative Assoc. (Adjusted Confounders)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfredsson, et al. (1982 & 1983)</td>
<td>Swedish, < 65 y.o. N = 334 cases, N = 882 population controls</td>
<td>Iargued: Hectic/irrespective aspects of control as quadrant terms</td>
<td>Hospitalized and/or fatal MI</td>
<td>Total study (Age) RR 1.32</td>
<td>Rushed tempo = NS Low influence work tempo = NS Not learning new things = NS Rushed tempo + monotony = NS (Age)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hospitalized and/or fatal MI</td>
<td>RR 1.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hospitalized and/or fatal MI</td>
<td>RR 1.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hospitalized and/or fatal MI</td>
<td>RR 1.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hospitalized and/or fatal MI</td>
<td>RR 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Skill discretion Control (Age)</td>
<td>P < .01</td>
</tr>
<tr>
<td>Bobak, et al. (1998)</td>
<td>Czech, 25–64 y.o. N = 179 cases N = 764 controls All full-time employed</td>
<td>Self-report: ψ Demands (3 items) Decision-latudine (8 items) Quartile term (21% job strain)</td>
<td>First nonfatal MI Highest decision latitude quartile (Age, district, education, hypertension, other coronary RF)</td>
<td>RR 0.43</td>
<td>Job strain = NS Highest ψ demands quartile RR = 0.52 (Age, district, education, hypertension, other coronary RF)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Highest decision latitude quartile</td>
<td>RR 0.52</td>
</tr>
<tr>
<td>Lundell, et al. (1997)</td>
<td>Swedish, < 52 y.o. N = 13 cases N = 12 hypertensive controls, All professional drivers</td>
<td>Self-report: PSISQ Demand/control Quotient term</td>
<td>Hospitalized IHD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Table continued on next page.)
TABLE 3. Studies of Job Strain and Ischemic Heart Disease among Men (Continued)

<table>
<thead>
<tr>
<th>First Author (Year)</th>
<th>Study Participants</th>
<th>Form(s) of Job Strain Variable</th>
<th>Illness Outcome</th>
<th>Significant Positive Associations (Adjusted Confounders)</th>
<th>Null or Sng. Negative Assoc. (Adjusted Confounders)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hallqvist, et al. (1998)</td>
<td>Swedish, 45–64 y.o. N = 1047 cases; N = 1450 population controls</td>
<td>Self-report: PS/SQ Quartile term and optimal term (reflects optimum balance between exposure contrast and power)</td>
<td>First hospitalized and/or fatal MI</td>
<td>Self-report: Job strain 2.2 → 9.2</td>
<td>Self-report: Nonmanual workers Job strain = NS w demands = NS Decision latitude = NS w demands = NS (Hypertension, smoking, BMI) Impaired Decision latitude (Age, catchment area) OR 1.7</td>
</tr>
<tr>
<td>Hammar, et al. (1994)</td>
<td>Swedish, 30–64 y.o. N = 13,203 cases N = 22,599 population controls</td>
<td>Imputed: Eccentric aspects of Decision-latitude Quadrant term (relaxed quadrant as referred)</td>
<td>First MI</td>
<td>White collar 1.4</td>
<td>White collar Single factors = NS Eccentric work and other factors = NS</td>
</tr>
<tr>
<td>Silva, et al. (1991)</td>
<td>Danish, < 55 y.o. N = 52 cases N = 72 community and hospital controls</td>
<td>Self-report: Workload/elements of control Quadrant term</td>
<td>Survivors of MI</td>
<td>Heavy workload + contradictory demands 1.96</td>
<td>Workload = NS Autonomy = NS</td>
</tr>
<tr>
<td>Theorell, et al. (1987)</td>
<td>Swedish, < 45 y.o. N = 85 cases N = 116 community controls</td>
<td>Self-report: 3-Quotient terms: Demands (2 items) + Influence (3 items) Intellectual discretion or variety (1 item each)</td>
<td>Hospitalized nonfatal MI Coronary artery atherosclerosis</td>
<td>Variety of work tasks 0.01</td>
<td>w demands = NS Infruence over work = NS Intellectual discretion = NS w demands/influence over work = NS (Age, education, coronary risk factors)</td>
</tr>
<tr>
<td>First Author (Year)</td>
<td>Study Participants</td>
<td>Form(s) of Job Strain Variable</td>
<td>Illness Outcome</td>
<td>Significant Positive Associations (Adjusted Confounders)</td>
<td>Null or Slg. Negative Assoc. (Adjusted Confounders)</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------</td>
<td>--------------------------------</td>
<td>----------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control (11 items)</td>
<td></td>
<td>High v. demands/low control/low support</td>
<td>Control = NS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quadrant term (relaxed quadrant as referent)</td>
<td></td>
<td>White collar</td>
<td>White collar High v. demands/low control = NS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3-Factor multiplicative interaction ratio = 1.09</td>
<td>(Age, dimensions of inoscan)</td>
</tr>
</tbody>
</table>

| | | Control (11 items) | | Blue collar | Isostrain (Age) = NS |
| | | | | Isostrain (Age) | 2.04 |

Karasek, et al. (1987)	N = 5000, Swedish, mean age 37.1 ± 12.1, white collar, trade-union members	Workload (3 items)	Self-reported heart disease (Age, marital status)	1.24	SOR 1.5
		Decision latitude (4 items)		Workload	1.18
		Main effects only		Conflict	1.12
				Clarity	0.92
				Decision/latitude	0.90
				Social support	%

Karasek, et al. (1988)	U.S., 18–79 y.o. N = 2409 HES, N = 2424 HANES population sample (87% white)	Ingrown: Quadrant term (20% job strain)	MI (N = 39 HES)	Job strain—HES SOR 1.5 v. Demands—HES = NS	(Age, race, education, SBP, other coronary RF)
				—HANES	1.6
				v. Demands—HANES	2.1
				Decision latitude—HES	-1.5
				(Age, race, education, SBP, other coronary RF)	-2.0

Table continued on next page.
Table 3: Studies of Job Strain and Ischemic Heart Disease among Men (Continued)

<table>
<thead>
<tr>
<th>First Author</th>
<th>Study Participants</th>
<th>Form(s) of Job Strain Variable</th>
<th>Illness Outcome</th>
<th>Significant Positive Associations (Adjusted Confounders)</th>
<th>Null or Sig. Negative Assoc. (Adjusted Confounders)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hatry, et al. (1992)</td>
<td>N = 1132 males, N = 357 females</td>
<td>Self-report: JCQ, Predefined cutpoints: (25% job strain men, 43% in women)</td>
<td>Degree of coronary atherosclerosis</td>
<td></td>
<td>Job strain = Quadrant term = NS Index = NS (Age, gender, blood pressure, coronary risk factors, history of MI, typical angina)</td>
</tr>
</tbody>
</table>

Cohort Studies

<table>
<thead>
<tr>
<th>First Author</th>
<th>Study Participants</th>
<th>F/u (y)</th>
<th>Form(s) of Job Strain Variable</th>
<th>Illness Outcome</th>
<th>Significant Positive Associations (Adjusted Confounders)</th>
<th>Null or Sig. Negative Assoc. (Adjusted Confounders)</th>
</tr>
</thead>
</table>
| Alfredsson, et al. (1985) | N = 538,096 total*, Swedish, 20-64 y.o., population-based | 1 | Imputed: Hectic/variability of control as quadrant terms | Hospitalized MI (N = 1059) | (Age) | SMR (Age)
Hectic work = NS
Monotonous work = NS |
| | | | | | | |
| * Total not by gender, gender-stratified analysis done—males in this table |

Low control (SR) & angina pectoris = 1.54
Low control (SR) & diagnosed IHD = 1.6
Low control (SR) & any CHD event = 1.55
Job strain (SR) & any CHD event = 1.43 (Age & fim time) |
| | | | | | | |
Isotest: Total group = 1.92
Isotest: White collar = 2.58 (Age) |

(Table continued on next page.)
<table>
<thead>
<tr>
<th>First Author</th>
<th>Study Participants</th>
<th>N/a</th>
<th>Form(s) of Job Strain Variable</th>
<th>Illness Outcome</th>
<th>Significant Positive Associations (Adjusted Confounders)</th>
<th>Null or Sign. Negative Assoc. (Adjusted confounders)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Johnson, et al. (1996)</td>
<td>N = 12,517, Swedish 25-74 y.o., population-based (nested case-control N = 2422 controls)</td>
<td>14</td>
<td>Imputed: Demands (2 items) Control (12 items) Support (4 items) Interaction terms</td>
<td>CVD mortality (N = 521)</td>
<td>Low control Low control/low support (Age, class, nationality, physical job demands, education, exercise, smoking, last year employed)</td>
<td>RR 1.83 2.62</td>
</tr>
<tr>
<td>Kanasek, et al. (1981)</td>
<td>N = 1461, Swedish, 15-61 y.o., population-based (Nested* case-control: N = 66 controls)</td>
<td>9</td>
<td>Self-report: Demands (2 items) Intellectual Discretion (2 items) Personal Schedule Freedom (3 items)</td>
<td>CVD & cerebrovascular mortality (N = 22)</td>
<td>High (\gamma) demands High (\gamma) demands & low personal freedom schedule (Age, education, smoking, CHD or at baseline)</td>
<td>OR 4.0 4.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Self-report CHD</td>
<td></td>
<td></td>
<td>SOR 1.29 1.44</td>
</tr>
<tr>
<td>Theorell, et al. (1991a)</td>
<td>N = 79, Swedish, < 45 y.o., employed, first MI survivors</td>
<td>5</td>
<td>Self-report:</td>
<td>Mortality from repeat MI (N = 13)</td>
<td>Demands + variety (univariate) Demands + intellectual discretion or variety (1 item/each)</td>
<td>P 0.03 0.02</td>
</tr>
<tr>
<td>Alterman, et al. (1994)</td>
<td>N = 1683 U.S., 38-56 y.o., Chicago Western Electric healthy employees of European ancestry (74% blue collar)</td>
<td>25</td>
<td>Imputed: QUS Total term (7% job strain)</td>
<td>CHD mortality</td>
<td>High decision latitude (Age, SBP, cholesterol, smoking, alcohol, family history CVD)</td>
<td>RR 0.76</td>
</tr>
</tbody>
</table>

(Table continued on next page.)
TABLE 3. Studies of Job Strain and Ischemic Heart Disease among Men (Continued)

<table>
<thead>
<tr>
<th>First Author (Year)</th>
<th>Study Participants</th>
<th>N</th>
<th>Form(s) of Job Strain Variable</th>
<th>Illness Outcome</th>
<th>Significant Positive Associations (Adjusted Confounders)</th>
<th>Null or Sig. Negative Assoc. (Adjusted Confounders)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hlatky, et al. (1995)</td>
<td>N = 1132 men, N = 357 women U.S. patients undergoing coronary angiography (88% white, 66% white collar)</td>
<td>4</td>
<td>Self-report: JCQ (Carpenter)</td>
<td>Incident nonfatal MI (N = 70) Cardiac death (N = 42)</td>
<td>In patients with significant CAD: Job strain index & quadrant term = NS for cardiac death & cardiac events (Established prognostic factors including ejection fraction, CAD extent, myocardial ischemia) In patients without significant CAD: Job strain index & quadrant term = NS for cardiac events (N = 6 total) (Age, gender, ejection fraction, insignificant CAD)</td>
<td></td>
</tr>
<tr>
<td>Reed, et al. (1989)</td>
<td>N = 4737, U.S. Hawaiians of Japanese descent, 45–65 y.o. population-based</td>
<td>18</td>
<td>Imputed: QBS Quartile Term Multiplicative Score Vector Score</td>
<td>Incident definite CHD (N = 359)</td>
<td>All calculated forms of Job Strain = NS</td>
<td>ω Demands = NS Decision latitude = NS In age-stratified group: Low job strain (vector score) p < 0.05 (Age, blood pressure & other coronary risk factors)</td>
</tr>
<tr>
<td>Steenland, et al. (1997)</td>
<td>N = 3575, U.S. 25–74 y.o., population-based 58% blue collar</td>
<td>12–16</td>
<td>Imputed: QBS Quartile term (17% job strain)</td>
<td>Incident heart disease (N = 519)</td>
<td>Job control (highest compared to lowest quartile) (Age, education, blood pressure, other coronary risk factors)</td>
<td>OR 0.71</td>
</tr>
</tbody>
</table>

υ = psychological, Dx = diagnosed, HES = Health Examination Survey, HANES = Health and Nutrition Examination Survey, IHD = ischemic heart disease, JCQ = job content questionnaire, NS = nonsignificant. OR = odds ratio, PSJQ = psychological job strain questionnaire (Swedish), PSHEM = Psychosocial Job Exposure Matrix, QBS = quality of employment surveys, RF = risk factors, RH = relative hazard, RR = relative risk, SES = socioeconomic status, SMR = standard mortality ratio, SR = self-reported.

Notes: Significant positive associations require a lower limit of the 95% confidence intervals > 1.0 and/or p < 0.05. The N for women is indicated only if the analysis was not gender stratified.

* The study by Karasek, et al. (1981) analyzes incident cases of CVD death compared to matched controls selected from the cohort. As per Hulley, et al., we term this a “nested case control study” and include it within the cohort studies.
TABLE 4. Studies of Job Strain and Ambulatory Blood Pressure among Men

<table>
<thead>
<tr>
<th>First Author, Year</th>
<th>Study Participants</th>
<th>Form(s) of Job Strain Variable</th>
<th>Significant Positive Effects: SBP (Adjusted Confounders)</th>
<th>Significant Positive Effects: DBP (Adjusted Confounders)</th>
<th>Null or Sig. Negative Assoc. (Adjusted Confounders)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cesana et al. (1996)</td>
<td>N = 527, No. Italian, 25-64 y.o. population sample</td>
<td>Self-report: JCQ</td>
<td>Quadrant and tertile terms</td>
<td></td>
<td>Borderline hypertensives Quadrant tertile work and 24 h: SBP and DBP = NS Tertile tertile: SBP work: -4.6, 24h: -3 DBP work: -1.7, 24h: -1 Normotensives Quadrant and tertile terms: Work & 24 h DBP = NS (As SBP)</td>
</tr>
<tr>
<td>Härenstam et al. (1988)</td>
<td>N = 566, Swedish, (age unspecified), prison staff</td>
<td>Self-report:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light et al. (1992)</td>
<td>N = 65, U.S., 18-47 y.o., 58% white, 42% black 71% white collar</td>
<td>Self-report: JCQ</td>
<td>Quadrant term (23% job strain-men)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Table continued on next page.)
<table>
<thead>
<tr>
<th>First Author</th>
<th>Study Participants</th>
<th>Form(s) of Job Strain Variable</th>
<th>Significant Positive Effects: SBP (Adjusted Confounders)</th>
<th>Significant Positive Effects: DBP (Adjusted Confounders)</th>
<th>Null or Sig. Negative Assoc. (Adjusted Confounders)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schnall, et al.</td>
<td>N = 262, U.S., 30-60 y.o. from 8 worksites, 84% white</td>
<td>Self-report: JCQ, Quadrant term (21% job strain) and 9th cell term</td>
<td>Job strain Quadrant 9th cell Work + 6.7 → + 11.5 Home + 6.5 → + 8.6 Sleep + 6.2 (no data) Work (p = 0.015) (Age, race, education, BMI, smoking, PA, urine Na+, TAB, worksite, ETOH)</td>
<td>Job strain Quadrant 9th cell Work + 2.7 → + 4.1</td>
<td>Job strain: DBP home & sleep = NS ψ demands = NS (except work SBP) Decision latitude = NS (As SBP)</td>
</tr>
<tr>
<td>(1992), Landesbergis, et al. (1994)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schnall, et al.</td>
<td>N = 195, U.S., 33-63 y.o. from 8 worksites, 84% white</td>
<td>Self-report: JCQ, Quadrant term (16% job strain)</td>
<td>Job strain Work + 6.4 Home + 6.9 Sleep + 5.0 (Age, race, BMI, smoking, ETOH)</td>
<td>Job strain Work + 5.0 Home + 4.9</td>
<td>Job strain sleep DBP = NS</td>
</tr>
<tr>
<td>(1998)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steptoe, et al.</td>
<td>N = 49, U.K., 23-29 y.o. firefighters</td>
<td>Self-report: ψ demands (3 items) Control (3 items) Skill utilization (4 items) (51% job strain)</td>
<td>Job strain & systolic reactivity: Afternoon work + 12.4 (Groups with and without job strain, high-low reactivity did not differ significantly in age, BMI, ETOH, smoking, baseline BP, inter alia)</td>
<td>(As SBP)</td>
<td>Job strain: Work SBP & DBP = NS</td>
</tr>
<tr>
<td>(1995)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1999)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thorell, et al.</td>
<td>N = 161, Swedish, 35-55 y.o. borderline HTN (DBP = 85-94) employed</td>
<td>Imputed: ψ demands (2 items) Control (12 items) Quotient term with 3 levels: high, medium, low</td>
<td>Low physical demand: Job strain Medium High Work + 7.4 → + 11.9 Leisure + 5.9 → + 9.9 Sleep + 7.4 → + 10.2</td>
<td>High physical demand: DBP work, leisure & sleep = NS</td>
<td>High & low physical demand SBP work, leisure & sleep = NS</td>
</tr>
<tr>
<td>(1991b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Results not gender-stratified

(Table continued on next page.)
<table>
<thead>
<tr>
<th>First Author (Year)</th>
<th>Study Participants</th>
<th>Form(s) of Job Strain Variable</th>
<th>Significant Positive Effects: SBP (Adjusted Confounders)</th>
<th>Significant Positive Effects: DBP (Adjusted Confounders)</th>
<th>Null or Sig. Negative Assoc. (Adjusted Confounders)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cohort Ambulatory BP Studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Author (Year)</td>
<td>Study Participants</td>
<td>F/u (y)</td>
<td>Form(s) of Job Strain Variable</td>
<td>Significant Positive Effects: SBP (Adjusted Confounders)</td>
<td>Significant Positive Effects: DBP (Adjusted Confounders)</td>
</tr>
<tr>
<td>Schnell, et al. (1998)</td>
<td>N = 30,5 U.S., 30-60 y.o. from 8 worksites, 84% white</td>
<td>3</td>
<td>Self report: JCQ Quadrant term (21% job strain)</td>
<td>Job strain at T1 & T2 vs. at neither Work + 11.1 Home + 11.1 Sleep + 10.8</td>
<td>Job strain at T1 & T2 vs. at neither Work + 9.1 Home + 7.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thorell, et al. (1988)</td>
<td>N = 40, Swedish 26-60 y.o., 6 different occupations</td>
<td>1</td>
<td>Self report: PSISQ Quotient term — 4 levels</td>
<td>Highest repeated job strain Work + 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case-Control Ambulatory BP Study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Author (Year)</td>
<td>Study Participants</td>
<td>Form(s) of Job Strain Variable</td>
<td>Significant Positive Effects: SBP (Adjusted Confounders)</td>
<td></td>
<td>Null or Sig. Negative Assoc. (Adjusted Confounders)</td>
</tr>
<tr>
<td>Schnell, et al. (1999)</td>
<td>N = 215, U.S., 30-60 y.o. from 8 worksites, 84% white</td>
<td>Self report: JCQ Quadrant term (21% job strain)</td>
<td>Job strain Case defined at work ambulatory BP > 85, OR 3.1</td>
<td>Case defined at work ambulatory BP > 90 2.6</td>
<td>Case defined at work ambulatory BP > 95 24.4 (Age, BMI, type A behavior, 24 h urine Na* excretion, physical activity on the job, education, smoking, ETOH, work site)</td>
</tr>
</tbody>
</table>

BMI = body mass index, ETOH = alcohol, JCQ = job content questionnaire, NS = nonsignificant, OR = odds ratio, PA = physical activity, PSISQ = psychosocial job strain questionnaire (Swedish), TAB = Type A behavior.

STREINLAND, ET AL.
which recordings were continued outside work, ambulatory SBP was found to be significantly elevated during leisure, nonwork time among those exposed to job strain. One additional study, in which only main effects were assessed, shows that low skill discretion is a significant, independent predictor of ambulatory SBP during work, as well as during leisure time.91 High psychological demands also were found to be associated with a significant elevation in ambulatory SBP during work.228a Ambulatory diastolic blood pressure (DBP) was significantly higher during work among those exposed to job strain, with a "carry-over effect" to leisure time in two studies.159,227,228b,259,275

Significant dose-response relationships were reported in three studies: when job strain was defined at a more extreme level (e.g., the top tertile of demands or the bottom tertile of latitude, or their combination—the 9th cell term; see Chapter 6), the blood pressure effect also was greater. Thus, analyzing the Schnall, et al. 1992 study and the Landsbergis, et al. study together, when job strain was defined by the usual quadrant term work ambulatory SBP showed a +6.7 mmHg effect, but when the 9th cell was used the effect rose to +11.5.132,228a In the study of borderline hypertensives by Theorell and colleagues, exposure to "medium" levels of job strain (and low levels of physical demand) was associated with a +7.4 mmHg effect on ambulatory DBP during work, compared to +11.9 among those exposed to "high" job strain.229 Self-report bias was obviated in this study by use of the imputation method.

In contrast, both Blumenthal, et al. and Cesana, et al. obtained null or negative results when job strain was assessed by self-report among borderline, unmedicated hypertensives.23,41 The latter group of authors have suggested that this may reflect a denial phenomenon. This formulation is concordant with Theorell’s observations that an underreporting of a stressor may be associated with overreaction physiologically, among those with a positive family history of hypertension.257

In the Knox, et al. study and the Theorell, et al. 1985 study, use of the imputation method based upon single items to define the major job strain dimensions may have contributed to nondifferential misclassification.133,262 Two single-occupation studies by Steptoe and colleagues also reveal a number of null cross-sectional ambulatory BP findings. In a group of firefighters, 51% were deemed to have been exposed to job strain, based upon a small number of items for each dimension.240 Using similar methodology, 49% of teachers (not gender stratified) were said to have been exposed to job strain.248 Nondifferential misclassification due to limited range of variation of actual job characteristics may explain these results. Nevertheless, when job strain exposure status was combined with systolic reactivity, a significant positive effect upon afternoon work SBP was found (+12.4) among the firefighters. Among the teachers, the difference in BP between evening and day work was significantly less among those with high (−0.64/−2.45) versus low (−3.72/−4.5) job strain (not gender stratified).

The case-control study of Schnall, et al. reveals a significant positive relation between exposure to job strain and hypertensive status, as defined by work ambulatory BP.228 Furthermore, as the definition of hypertension was made progressively more rigorous (work ambulatory BP > 85, 90, and 95 mmHg), the odds ratio for exposure to quartile-term job strain increased correspondingly (3.1, 3.6, and 24.4, respectively).

Both cohort ambulatory BP studies report significant positive findings. In the Schnall, et al. 1998 study, exposure to job strain at baseline and 3 years later showed a +11.1 mmHg effect on workplace and home ambulatory SBP compared to those
unexposed at both times. The DBP effect also was marked. Furthermore, those men who reported being exposed to job strain at baseline but not 3 years later showed a significant drop in work and home ambulatory BP at 3-year followup, after controlling for major confounders.

Casual Blood Pressure Studies. Studies of job strain in relation to casual BP (usually measured in the clinic or other unspecified setting outside the workplace) are generally less consistent than those using ambulatory recordings at the workplace. Significant positive effects of exposure to job strain among men were found with respect to casual SBP in the cross-sectional studies of Cesana, et al., among normotensives but not borderline hypertensives, and of Melamed, et al., in which exposure to hectic, short-cycle, repetitive work was compared to jobs with substantial variety or longer cycle. Kawakami and colleagues reported a significantly elevated SBP and DBP among day workers exposed to job strain, but not among those working rotating shifts. In only one of the five large databases assessed by Pieper, et al. was exposure to job strain using the imputation method significantly associated with casual SBP and DBP. However, a summary estimate of all five working population samples revealed a significant relation between a low decision-latitude and SBP. In a similar vein, Curtis, et al. found a significant inverse relation between hypertensive status based on casual BP readings and self-reported decision latitude at work.

In contrast, in other studies neither exposure to job strain nor its major dimensions (when analyzed) were associated with hypertensive status or BP levels, based on casual BP readings. (In the Carrère, et al. study, BP was measured immediately pre- and post-work.) In the investigations of Greenlund, et al. and Netterström, et al., nonsignificant relations (gender-adjusted but not stratified) between job strain or its major dimensions and casual BP measures were found, with a few unexpected negative relations in the latter study. A cohort study by Chapman, et al. revealed that exposure to deadlines at work was associated with a significant increase in SBP, while other single or interaction terms reflecting job strain and/or its major dimensions showed no significant relations to SBP nor DBP among men.

The papers of Albright, et al., Carrère, et al., and Emdad, et al. are on single occupations, and therefore are of limited range of variance. The major issue, however, for most of these studies, is that casual BPs are highly variable and, in the clinic setting, may be influenced by psychosocial factors related to the clinic visit itself, the so-called "white coat effect." Worksite point measurements of BP appear to be more reliable than casual clinic BP (see Chapter 7). Schnall and colleagues found that workers exposed to job strain showed an increased likelihood of having hypertension, classified on the basis of worksite point measurements of BP. Furthermore, as the definition of hypertension was made more stringent, the odds ratio increased, providing additional evidence of the reliability of workplace point estimates, as well as the criterion validity of the relation between job strain and BP elevation.

Thus, with respect to casual BP, we find limited evidence that job strain or its dimension(s) has a major impact. This is in contradistinction to studies that measure ambulatory BP and examine averaged BPs during work, as well as other periods, as the outcome. These studies show strong, consistent effects of job strain or its major dimension(s) on BP. Furthermore, there is some evidence, albeit not totally consistent, of a dose-response relationship with respect to ambulatory BP and exposure to increasingly severe job strain. In addition, there is cohort data demonstrating not only the expected temporal relationship between exposure and outcome, but also the effect of cumulative exposure. Finally, the data, albeit observational rather than a
controlled intervention, indicate that "a change in exposure is associated with a change in morbidity." Hernberg has categorized the latter as "the most conclusive evidence of causality."109

OTHER CARDIAC RISK FACTORS

Some studies indicate that exposure to job strain and/or its major dimensions is associated with other standard cardiac risk factors among men. There are theoretical background discussions on how work organizations can influence health-related behaviors that impact upon the CV system.113,115

With regard to cigarette smoking, it has been proposed that workplace stressors have less impact on smoking prevalence than on smoking intensity, since people often begin smoking before entering the labor market.28 According to current studies, the focus here is on results concerning smoking intensity among current smokers. Green and Johnson found, after controlling for sociodemographic factors, that male chemical plant employees in higher-strain work smoked significantly more cigarettes, and more of them had increased the number of cigarettes smoked, compared to those with lower-strain jobs.61 Hellerstedt and Jeffery also reported a significantly greater number of cigarettes smoked per day among men in high-strain jobs compared to passive jobs, after sociodemographic adjustment.98 Kawakami, et al. found that high-strain jobs and passive jobs with low social support were associated with increased smoking intensity.130 Other studies also reveal a significant positive association between job strain and/or its major dimensions and smoking intensity among men.176,209

However, in a study of young adults, after adjusting for age, education, and type A behavior, Greenlund and colleagues found no significant relation between self-reported job demands, decision latitude, job strain, and smoking intensity.82 Among male professional drivers, no significant relation was found between self-reported job strain, psychological demands, decision latitude, and smoking intensity.85 Two imputational studies, in which sociodemographic adjustment was not made, also reveal no association between exposure to job strain and/or its major dimensions, and how much workers smoke.2,218 In the only prospective study in which changes in smoking prevalence were examined, men whose job decision latitude increased over 3 years had a substantial reduction in cigarette smoking. The greatest increase in decision latitude was found among those 13 men who quit smoking.151

Sedentary behavior during nonwork time was found to be significantly associated with less social interaction at work, as well as with fewer opportunities to learn new things on the job (an integral part of the decision-latitude), in a population-based sample of Swedish men, after adjusting for age and education.113 Similarly, another study found a significant inverse relation between low decision-latitude and number of exercise sessions per week, after sociodemographic adjustment.98 However, no significant association was found between sedentary leisure time and job strain or its major dimensions in the study of Landsbergs, et al.151

Obesity, as assessed by detailed anthropometric measurements, has been found among Hispanic men in the U.S. (HHANES study) to be significantly associated with exposure to job strain, decision authority, and psychological demands (imputation method), after adjusting for age, education, and smoking status.78 Netterström and colleagues reported that both self-reported and imputed exposure to job strain were associated with a significantly elevated body mass index (BMI) in a sample of men and women; these results were adjusted for, but not stratified by, gender.106 In contrast, a number of other studies relying upon BMI show no relation between job
strain or its major dimensions and BMI among men. In a study of male professional drivers, an inverse relation was found between self-reported job strain and self-reported BMI. This finding was attributed to denial, which has been shown to deleteriously impact upon cardiac risk among professional drivers.

Hellerstedt and Jeffery found a significant relation between high-fat diet and exposure to high psychological demands, as well as job strain. Psychosocial stressors may promote atherogenic processes (see Chapter 5). Here, we briefly summarize the epidemiologic data concerning these metabolic parameters and job strain and/or its major dimensions. Ishizaki, et al. found that low psychological demands significantly predicted tissue plasminogen activator levels, independently of traditional cardiac risk factors. Elevated fibrinogen was reported by Brunner and colleagues in the Whitehall II study to be associated with low workplace control, as assessed both by self-report and external observer. In the former case, this effect remained after adjustment for socioeconomic status. However, Ishizaki, et al. found neither job strain nor its major dimensions significantly associated with plasma fibrinogen levels. Moller and Kristensen also failed to find that job strain was a significant, independent predictor of plasma fibrinogen levels, using a multivariate model that included social class.

Of the studies that have examined the relations between serum cholesterol and/or its constituent fractions, and job strain or its major dimensions, no significant results among men have been reported. Netterström, et al. reported that HbA1C was significantly associated with imputed exposure to job strain in a sample of men and women; these results were adjusted for, but not stratified by, gender. Other studies assessing glucose intolerance showed no significant relation to job strain or its major dimensions among men.

Thus, there is preliminary evidence that job strain or its major dimension(s) may impact on cardiac risk factors besides BP. Some noteworthy results are seen regarding smoking intensity. There are some suggestive data regarding links to the coagulation mechanisms and other metabolic indices contributing to the atherogenic process; however, there are also substantial null findings. Much additional research is needed before definitive conclusions can be reached in this area.

The Effort-Reward Model

Ischemic Heart Disease and Other Hard CVD Endpoints

Measures of effort-reward imbalance (ERI) at work have been found to predict new manifestations of coronary heart disease in Germany, Finland, and England (Table 5). In a prospective study of 416 German factory workers aged 25–55, a number of measures of high effort and low reward independently and strongly predicted CHD incidence over 6.5 years after adjusting for other behavioral and somatic risk factors. These measures included status inconsistency (OR 4.4), job insecurity (OR 3.4), work pressure (OR 3.5), and overcommitment (OR 4.5). A combined “low reward/high effort” variable was also a significant predictor (OR 3.4) in a separate analysis. If advanced, subclinical CHD (OR 6.2) or stroke (OR 8.2) is added to the case definition, the association with ERI becomes even more substantial.

Among men in the British Whitehall study, exposure to a combination of high effort and low reward more than doubled the risk of newly reported CHD over 5.3 years. Finally, in a prospective study of Finnish men, those facing high work demands, low work resources, and low income had a more than doubled risk of myocardial infarction or dying from heart disease after 8.1 years, compared to men with low demands,
<table>
<thead>
<tr>
<th>First Author (Year)</th>
<th>Study Participants</th>
<th>Form(s) of Exposure Variable</th>
<th>Follow-up (y)</th>
<th>Illness Outcome</th>
<th>Significant Positive Associations (Adjusted Confounders)</th>
<th>Null or Sig. Negative Assoc. (Adjusted Confounders)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siegrist, et al. (1990)</td>
<td>416 male German blue-collar workers from 3 factories</td>
<td>Low security, career opportunities, job insecurity or status inconsistency, High effort, work pressure or overcommitment</td>
<td>6.5</td>
<td>Acute MI or SCD (n = 263 in analysis)</td>
<td>Status inconsistency, Overcommitment, Low security, career opportunities or high effort</td>
<td>Low security, career opportunities and high effort (Age, BMI, SBP, lipids)</td>
</tr>
<tr>
<td>Siegrist & Pour (1994); Siegrist (1996)</td>
<td></td>
<td></td>
<td></td>
<td>Acute MI, SCD, or advanced (subclinical) CAD (n = 329 in analysis)</td>
<td>Low security, career opportunities, or high effort</td>
<td>Low security, career opportunities, and high effort</td>
</tr>
<tr>
<td>Lynch (1997a)</td>
<td>N = 940, Eastern Finnish men, 42–60 y.o., population-based</td>
<td>Stress from work demands scale (11 items split at high 20%), Economic rewards scale (income, split at low 20%)</td>
<td>4.2</td>
<td>Progression of carotid atherosclerosis (plaque height, max. & mean IMT)</td>
<td>High demands, low income</td>
<td>Groups with other combinations of demands and income = NS (Age, baseline IMT)</td>
</tr>
</tbody>
</table>

(Table continued on next page.)
<table>
<thead>
<tr>
<th>First Author (Year)</th>
<th>Study Participants</th>
<th>Form(s) of Exposure Variable</th>
<th>E/a (y)</th>
<th>Illness Outcome</th>
<th>Significant Positive Associations (Adjusted Confounders)</th>
<th>Null or Sig. Negative Assoc. (Adjusted Confounders)</th>
</tr>
</thead>
</table>
| Lynch, et al. (1997b) | N = 2297, Eastern Finnish men, 42–60 y.o., population-based | • Stress from work demands scale (11 items)
• Resources scale (5 items) (skill discretion/seasonal rewards of work; interesting, enjoyable, meaningful work)
• Economic rewards scale (income, split at low 40%)
Referent = low, high, high | 8.1 | Acute MI | High demands, low resources, low rewards
(Age, alcohol, smoking, physical activity)
(Age, depression, marital status, hopelessness)
(Age, fibrinogen, SBP, BMI, CV)
fitness, lipids, other bioRF) | RH
Groups with other combinations of demands, resources, rewards = NS (Age) |
| Booms, et al. (1998) | 10,308 British civil servants (33% women), 35–55 y.o. | High effort: competitiveness, conscientious, hostility
Low reward: poor promotion prospects, blocked career | 5.3 | Newly reported CHD (results for men) | High effort and low reward
(Age, BMI, smoking, BP, lipids, employment grade, negative affectivity, length of follow-up, job control) | OR
High effort or low reward |

Cross-Sectional Study

<table>
<thead>
<tr>
<th>First Author (Year)</th>
<th>Study Participants</th>
<th>Form(s) of Exposure Variable</th>
<th>E/a (y)</th>
<th>Illness Outcome</th>
<th>Significant Positive Associations (Adjusted Confounders)</th>
<th>Null or Sig. Negative Assoc. (Adjusted Confounders)</th>
</tr>
</thead>
</table>
| Peter, et al. (1999b) | 2098 Swedish men and women, 45–64 y.o., population-based case-control SHEEP study | Effort-reward imbalance: ratio > 1
Job strain: latitude bottom 25% or demands top 25% | | Acute nonfatal MI (results for men) | Effort-reward imbalance (no job strain)
Effort-reward imbalance and job strain
(Age, BMI, smoking, HPT, lipids, exercise, diabetes, family history, SES) | OR
1.4
2.3 |

bioRF = biological risk factors, CAD = coronary artery disease, CVD = cardiovascular disease, HPT = hypertension, IMT = intima-media thickness, MI = myocardial infarction, SCD = sudden cardiac death.
Workplace Factors and CVD Outcomes

High resources, and high income. In addition, in this sample a combination of high work demands and low income was significantly associated with progression of carotid atherosclerosis. (In the German and Finnish studies, some measures of high effort or low reward were not associated with heart disease, as shown in Table 5.)

Blood Pressure

As seen in Table 6, in the cross-sectional study of 179 male German middle managers aged 40–55, forced job change (low reward) (OR 3.3) and a variable combining frequent interruptions (effort) and forced job change (OR 5.8) were strongly associated with hypertension. Similarly, in a cross-sectional study of Stockholm area residents, an effort-reward ratio greater than one was associated with hypertension (OR 1.6) among men. The combination of ERI and shiftwork among Stockholm men led to an even stronger association (OR 2.2) with hypertension.

In the prospective study of 416 German blue-collar workers from three factories, low promotion prospects at work (OR 2.7), competitiveness at work (OR 2.8), and feelings of sustained anger (OR 5.4) predicted coronary high risk status. (High risk was defined as the 13.6% of the sample with both hypertension and high lipid levels.) In addition, a variable combining overtime work (effort) and fear of job loss, job instability, and layoffs (low reward) was similarly associated (OR 3.3) with a comanifestation of hypertension and atherogenic lipids. (In all of these studies of hypertension, some of the measures of high effort or low reward were not associated with hypertension; see Table 6.)

Other Cardiac Risk Factors

Cardiac risk factors other than hypertension may represent additional pathways by which ERI may contribute to CVD. Among German blue-collar workers, LDL/HDL ratio was associated with high work demand, increased workload, and job insecurity, combined with occupational instability. In German managers, LDL cholesterol was predicted by a combination of workload and lack of support. In Swedish men, cholesterol/HDL ratio, but not plasma fibrinogen, was associated with ERI. Among the German managers, fibrinogen was associated with a combination of overcommitment and lack of social ("reciprocal") support, but not with combinations of other measures of effort or reward.

Comments on the Null Findings and General Interpretation

Despite the positive findings, some questions remain about which specific work factors are responsible for increasing CHD risk, and whether these variables are additive or interactive.

Specific Predictors of Risk. In the earlier studies, the set of variables used to measure effort and reward was not always identical, as some studies used "proxy" measures. In addition, Siegrist, et al. applied a less restrictive measurement approach where subjects were considered "exposed" to ERI when at least one of the effort and one of the reward variables were positive. Thus, we cannot be sure which work characteristic contributed to this combined risk factor. More recently, a standardized summary measure of ERI has been constructed based on a predefined algorithm. To illustrate this issue, in the three studies of hypertension (Table 6), only the German middle-manager study found associations between outcome and measures of extrinsic effort. Extrinsic effort was not associated with hypertension in the Swedish WOLF study. In the German blue-collar study, work pressure was not associated with outcome, and forced piecework was not in the analysis (due to
TABLE 6. Studies of the Effort-Reward Imbalance Model and Hypertension for Men

Cohort Studies

<table>
<thead>
<tr>
<th>First Author (Year)</th>
<th>Study Participants</th>
<th>Form(s) of Exposure Variable</th>
<th>Illness Outcome</th>
<th>Significant Positive Associations (Adjusted Confounders)</th>
<th>Null or Sig. Negative Assoc. (Adjusted Confounders)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siegrist et al. (1991); Siegrist (1996)</td>
<td>416 male German blue-collar workers from 3 factories</td>
<td>Low security, career opportunities: job instability, low promotion prospects, overcommitment: competitiveness, sustained anger High effort-low reward: overtime and job instability or fear of job loss</td>
<td>6.5 Comorbid manifestation of hypertension and high LDL-cholesterol (n = 314 in analysis)</td>
<td>Low promotion prospects 2.7 Competitiveness 2.8 Sustained anger 5.4 High effort-low reward (Age, BMI, smoking, exercise)</td>
<td>OR Work pressure, job instability; forced piecework and status inconsistency were not in the analysis, due to attempts to find the most parsimonious model</td>
</tr>
</tbody>
</table>

Cross-Sectional Studies

<table>
<thead>
<tr>
<th>First Author (Year)</th>
<th>Study Participants</th>
<th>Form(s) of Exposure Variable</th>
<th>Illness Outcome</th>
<th>Significant Positive Associations (Adjusted Confounders)</th>
<th>Null or Sig. Negative Assoc. (Adjusted Confounders)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peter & Siegrist (1997); Siegrist (1996)</td>
<td>179 healthy German male middle managers, 40-55 y.o.</td>
<td>High extrinsic effort: time pressure, frequent interruptions High intrinsic effort: overcommitment (upper tertile), sustained anger Low reward: lack of support, status incongruence, status discrepancy forced job change</td>
<td>Hypertension (≥ 160/95 mmHg) (n = 170 in analysis)</td>
<td>Bivariate analysis: Time pressure Frequent interruptions Forced job change Frequent interruptions + forced job change (Age, BMI, smoking, exercise)</td>
<td>Overcommitment Sustained anger Lack of support Status incongruence Status discrepancy Time pressure Frequent interruptions</td>
</tr>
<tr>
<td>Peter et al. (1998)</td>
<td>N = 2228, Swedish men, 30-55 y.o., population-based WOLF study</td>
<td>Effort-reward imbalance: (ratio > 1): overcommitment (upper tertile), extrinsic effort (above median), low reward (above median)</td>
<td>Hypertension (≥ 160.95 mmHg) (results for men)</td>
<td>Bivariate analysis: Effort-reward imbalance Overcommitment Effort-reward imbalance (Age, smoking, BMI) Effort-reward imbalance (Age, smoking, BMI, exercise)</td>
<td>Effort-reward imbalance Effort-reward imbalance (Age, smoking, BMI) Effort-reward imbalance (Age, smoking, BMI, exercise)</td>
</tr>
<tr>
<td>Peter et al. (1999a)</td>
<td>Rotating shift workers (vs day shift)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BMI = body mass index, SES = socioeconomic status.
colinearity). Only in one later analysis of the sample was overtime (plus low reward measures) associated with high CHD risk. Similarly, "forced job change" in the middle manager study and "low promotion prospects" in the blue-collar study were the only low reward measures associated with hypertension. ("Status inconsistency" was not in the analysis of the blue-collar sample due to colinearity with other reward measures.)

In the CHD studies (Table 5), no extrinsic measure was included in the Whitehall study analysis, and a very broad measure of work demands was used in the Finnish studies. Low status control (low job security) was essentially the measure of low reward in the German blue-collar sample and the Whitehall study, while economic reward and social support were added as measures of reward in the Finnish and the Swedish SHEEP studies.

Interaction Versus Additive Burden. As with the Job Strain Model, the question arises as to whether measures of high effort and low reward combine with each other additively to increase CHD risk, or whether they interact with each other ("synergism," see Chapter 3). In some analyses, as seen in Tables 5 and 6, synergism appears to exist. In the blue-collar study and the middle manager study, for example, the relative risk of CHD due to measures of high effort combined with low reward is substantially greater than the sum of the risks due to these two components separately. However, no statistical tests of interaction were conducted. A number of more recent analyses used a combined high effort-low reward ratio variable, which prevents observation of possible interaction.

In summary, several studies, both cross-sectional and prospective, have shown significant positive associations between measures of high effort to low reward and elevated lipid levels, hypertension, and CVD. The magnitude of the relationship is similar to that typically found for job strain with respect to these outcomes. Furthermore, preliminary evidence indicates that the effects of job control and ERI are statistically independent of each other in prediction of CHD and that the combined effects of exposure to job strain and ERI upon CVD are much stronger than the separate effects of each.

Threat-Avoidant Vigilant Work

A particularly heavy psychological burden occurs when one must continuously maintain a high level of vigilance to avoid disastrous consequences, which could occur with a momentary lapse of attention or a wrong decision. Among several of the occupations shown to be at high risk for CVD (e.g., bus, taxi, and truck drivers; air traffic controllers; sea pilots), threat-avoidant vigilant activity is a prominent aspect of work. Experimental animal studies have shown an association between performance of threat (shock) avoidance tasks and cardiac electrical instability.

A few epidemiologic studies have specifically examined aspects of threat-avoidant vigilant activity with regard to CVD outcomes. In a cohort study by Menotti and Secchiaracca of 99,029 Italian men employed by the railroad system, occupational psychologists rated jobs with respect to level of "responsibility at work." Levels were based on the "economic and financial implications of decisions taken at work, as well as the relevance of possible damage and hazards both economic and for human life as a consequence of possible mistakes made at work." The age-adjusted mortality rates due to MI were significantly greater (p < 0.001) for each of three ascending levels of responsibility at work compared to the lower levels. Job dimension data from expert ratings were imputed to a CV disability data base (N = 9855). For the dimension of having to be "alert to changing conditions," age-adjusted ORs of
1.85, 2.17 and 2.8 were found for the second, third, and highest quartiles, respectively. The "hazardous job situation" dimension showed age-adjusted ORs 2.07, 3.32, and 4.09, for the second, third, and highest quartiles, respectively. (Confidence intervals were not provided; the author identified job dimension scores having an OR of at least 2 as meriting additional research attention.) In the imputational study by Alfredsson, et al., an SMR of 132 (116–149) was calculated for hospitalization for MI among Swedish men whose jobs entailed risk of explosion. Occupational titles were used to impute job characteristics based upon observational analysis and interviews in a study of 6213 Finnish municipal employees. These authors identified requisites for "alertness of the senses" and dangerous work as quantitatively important stressors among male transport workers, with high prevalence of self-reported hypertension and CHD.

These epidemiologic studies provide suggestive evidence for an association between aspects of threat-avoidant work and CVD outcomes. Further investigation is needed, with more precise, well-controlled risk estimates, and accounting of biomedical and psychosocial risk factors.

SOCIAL CLASS, OCCUPATIONAL STATUS, AND CVD by Michael Marmot, FFPM—Supported by an MRC research professorship and by the John D. and Catherine T. MacArthur Research Foundation Research Network on Socioeconomic Status and Health

A dominant feature of the occurrence of cardiovascular disease (CVD) in most industrialized societies is the higher rate in people of lower socioeconomic position. The Whitehall studies of British civil servants showed that the link between socioeconomic position and CVD was not confined to higher rates among the poor. The poor do have high rates, but there is a social gradient: the lower the social status, the higher the CV risk. A review by Kaplan and Keil covers a wealth of studies showing a similar social gradient in the U.S.

What implications does the social gradient have for questions of etiology and in particular for the role of work? In the U.K., we traditionally used Registrar General’s social classes, which are based on occupation. It has never been clear whether the differences in CVD observed using these classes are due to occupation or to other features correlated with occupational status.

Elsewhere in this volume we show how ideas on the effects and meaning of social stratification have been shaped by Marx, Durkheim, and Weber. It is useful to think of three “meanings” of socioeconomic position, in terms of the ways they may affect health. First, low social position may be related to material deprivation, and absolute material deprivation (poverty) may be related to risk of illness. Second, socioeconomic position may be related to standing in society which may, in turn, relate to shared values, culture, and lifestyle. Third, socioeconomic position is a measure of position in the social hierarchy, which is related to power relationships. People higher in the hierarchy have more control over their own, and other people’s, lives. These power relations operate in the workplace, but not exclusively so.

Figure 1 shows standardized mortality ratios from ischemic heart disease (IHD) by Registrar General’s social classes in England and Wales. Focusing on the 1991–93 period, we see that IHD is markedly higher among men in social class V, unskilled manual workers. The gradient is shown clearly. Men in social class I have a mortality ratio about 35% lower than the England and Wales average, and men in social class IV
have mortality 25% higher. The high mortality of men in the lowest social class could be attributed, in part, to the effect of absolute deprivation. It is difficult to attribute the rest of the gradient to differing degrees of material deprivation. In contemporary Britain, the overwhelming majority of these men in classes I to IV are adequately housed, nourished, and clothed, with adequate provision of safe water and food, and safe handling of sewage. In addition, the steepening of the gradient over the 20-year period shown occurred at a time when material prosperity was increasing for the top 80% of the population. Absolute deprivation does not, therefore, provide a ready explanation for the gradient in IHD mortality. Using data on U.S. counties grouped according to the proportion in white-collar occupations, Wing, et al. showed that the inverse social gradient in CHD mortality has become progressively steeper between 1968 and 1982.26

The other two concepts of social stratification are more likely to provide explanations for the gradient. The research task is to distinguish influences associated with power relations that are linked to work from influences related to general social standing that are linked more to lifestyle. Neither of the other two models alone gives a fully adequate accounting of the changing social class relations of IHD. Extending the comparisons in Figure 1, there is evidence from England, Wales, and the Netherlands that in the 1950s and earlier, heart disease mortality may have been more common in people of higher socioeconomic position.16 Lifestyle may play some role in this; there is evidence that when the smoking epidemic first hit, it was at least as common among people of higher status but, with time, higher status people gave up smoking or declined to take up the habit to a greater degree than people of lower status. Physical activity may have followed a similar course. With the decline of physical activity in the workplace, the greater tendency for high-status people to be physically active in leisure time may have conferred increasing protection on them. One particular feature of diet—consumption of fresh fruit and vegetables that contain antioxidants and other protective nutrients—also may be related to the lower rate of heart disease in people of higher status.

The evidence from the Whitehall and Whitehall II studies is that these lifestyle factors may account for some, but by no means all, of the social gradient in CVD. In the Whitehall studies there was a social gradient in smoking, consumption of fruit
and vegetables, and sedentary lifestyle, but only for a limited extent in obesity and blood pressure level, and not at all in plasma cholesterol. In Whitehall I (CHD mortality) and Whitehall II (CHD incidence), adjusting for coronary risk factors related to lifestyle accounted for about a third of the social gradient169,170 Among nonsmokers the social gradient in CHD incidence and mortality was similar to the gradient in smokers. In Whitehall II, low control in the workplace was related to CHD incidence20 and accounted for about half the social gradient169 (Fig. 2).

In seeking to interpret this finding of the importance of the psychosocial work environment, consider two related questions: Did low control appear to be associated with CHD because low control is associated with low socioeconomic status, and other factors account for the association of low socioeconomic status with disease; in other words was there confounding? Did low control appear to be an important mediator of the relation between social position and CHD because low control is simply a measure of low socioeconomic position? Several convincing lines of argument indicate that these results were not simply the result of problems of confounding and/or measurement.

In the Whitehall II study and in a Czech case-control study, the relation between low control and CHD was not removed by adjusting for socioeconomic status.24,25 This finding implies that within a particular employment level, those with more control over their work have lower incidence of CHD than those with less control.

In separate studies in Sweden, first Johnson and Hall and then Hallqvist showed that job strain according to the demand/control model (DCM) was more strongly related to CHD in blue-collar than in white-collar workers.87,114 Of course, it could be argued that manual workers with more control, and lower coronary risk, are of higher status compared to manual workers with less control. This, however, is not an argument against the importance of low control in the workplace because it may be precisely this particular feature of low social status that is responsible for part of the social gradient in disease. One approach to deciding if it is low control or other characteristics associated with low social status that are related to CHD is multivariate analyses. In the Whitehall II study, multivariate analysis showed an independent effect of low
control. The second approach is to explore biological markers, such as plasma fibrinogen, which is a risk factor for coronary disease. In Whitehall II, smoking, obesity, and lack of exercise were associated with plasma fibrinogen level. Independent of this finding, low control at work also was associated with plasma fibrinogen level.36

In the Whitehall II study and the Czech case-control study, high demand was not associated with coronary risk. The fact that these civil servants were office-based workers may be relevant. In Sweden, the DCM was related to disease more strongly in manual than in nonmanual workers. Thus, the degree to which the full DCM predicts disease may be influenced by the nature of employment in different settings.

These findings do suggest that low control in the workplace is independently related to CHD and makes an important contribution to the social gradient in CHD, along with other risk factors, including those related to lifestyle and early life. There still is a problem, however. A social gradient in CHD exists in people who are not working in formal employment: homemakers, the unemployed, and retired people. Low control in the workplace does not apply to them, but they may be affected by power relations that apply throughout society. High-status people among these groups who are "not working" may have power, control, and mastery that derives from their general position in the social hierarchy, rather than the workplace. This is in accord with the results of studies in nonhuman primates that show high-status animals to have less atherosclerosis and less activation of stress hormones.252

Kawachi and Kennedy and others have shown a relation between income inequality and mortality internationally; in the U.S., the relation was shown at the state level. Their interpretation of this finding is that income inequality is a marker for the quality of the social environment which, in turn, affects disease risk.128,129,259 One reason for focusing on the role of work as one of the causes of the social gradient is that redesign of the workplace is more feasible than redesign of society, and may have other beneficial consequences.

WOMEN, WORK, AND CVD by Chantal Brisson, PhD

In several industrialized countries, CVDs are the leading cause of death in women, as they are in men, and generate an equal amount of heart disease expenditure in both groups.65,2246 CHD, the largest component of CVD, shows a lower rate in women than in men in younger age groups, but approaches similar rates for women and men in older groups.79 Therefore, the study of CHD in women of working age is more difficult than the study of men of similar age because larger populations of working women have to be enrolled to obtain a sufficient number of CHD events. Over the last two decades, CVD mortality rates have shown consistent decreases.15,266 However, in several countries there has been no decrease in women15,216,278 or the decrease has been less marked than in men.102,278 This difference could be due to changes that have occurred in women’s lives since the 1970s—such as paid employment.193 It is estimated that the proportion of women aged 25–49 involved in paid work will be 82% in the year 2000 in countries of the European Union.177

Gender Differences in Work and Home Exposures

Most women and men are employed in jobs where, their own gender has a large majority.12,177,194 Jobs held predominantly by women are concentrated in the services.177 In countries participating in the Organisation de Coopération et de Développement Économiques, four service industries contained half of working women: office work, sales, health care, and teaching.194
Notes: Prevalences cannot be compared between countries because different methods were used to categorize exposure groups.
(1) Random population sample—3847 male and 2587 female workers. Psychological demands and decision latitude assessed with 7 items from Job Content Questionnaire (JCQ). Median splits used to define high job strain.34
(2) Stratified random population sample—721 male and 389 female workers. Psychological demands and decision latitude assessed with full JCQ. Median splits used to define high job strain.156
(3) 748 male and 765 female white- and blue-collar workers living in 11 municipalities in Copenhagen County. Psychological demands and decision latitude assessed with 2 and 7 items. Job strain defined as combination of low degree of decision latitude (score ≥ 3) and high work pace (work pace reported too high or time pressure).36
(4) 6895 male and 3413 female London civil servants. Psychological demands and decision latitude assessed respectively with 4 and 9 items. Mediane splits used to define high job strain.20
(5) 8277 male and 3170 female workers from the GAZEL cohort. Psychological demands and decision latitude assessed with full JCQ. Median splits used to define high job strain.156
(6) 4018 mailhandlers from U.S. Postal Service. Psychological demands and decision latitude assessed respectively with 5 and 9 items from JCQ. Median splits used to define high job strain.156

FIGURE 3. Prevalence (%) of high job strain by gender in six populations from five countries.

Given this gender division of jobs it is expected that job characteristics potentially related to CV diseases also will differ. This clearly is the case regarding high job strain, defined as the combination of high psychological demands and low job decision latitude.232 Indeed, studies conducted in Canada, Denmark, England, France, and the U.S. all found a higher prevalence of job strain in women than in men (Fig. 3).20,34,90,156,166,188 It is particularly the level of control that is lower in women’s jobs.20,30,82,84,122,156,188 In some studies, higher psychological demands were observed in women,20,82,156 but other studies found little difference between women and men on this factor.95,151

Potentially stressful exposures related to family responsibilities are also more prevalent in women than in men. Indeed, despite their increasing involvement in paid work, women spend more hours than men in child caring and housework.20,153,157,166,299 For example, in countries of western Europe women spent an average of 35 hours/week in child caring and housework before 1975, and 31 hours/week after 1975. Men spent 8 and 11 hours, respectively during the same periods.94
Job Strain

JOB STRAIN AND CARDIOVASCULAR DISEASES

High job strain has been defined by Karasek as the combination of high psychological demands and low decision latitude.\(^{122}\) *Psychological demands* refers to the quantity of work, the mental requirements, and the time constraints. *Decision latitude* refers to the ability to make decisions about one’s own work and the possibility of being creative and using and developing skills. The Job Strain Model emphasizes that high psychological demands are not, in themselves, a great source of strain if they are combined with decision latitude, i.e., influence on one’s own work, since this influence enables a person to adequately meet the demands to which he or she is subject.

From 1981 on, a number of studies investigated the effect of job strain on CHD risk.\(^{6,7,9,29,30,83,86,88,103,114-116,118,124,148,218,247,260,265}\) In the area of stress at work and CHD, these studies constitute the largest group using a common conceptual model.\(^{123,144,226}\) Some recent studies found a high CHD risk mainly in workers exposed to low decision latitude.\(^{29,30,86,115,247,265}\) Others found little effect.\(^{9,103,218}\) Some studies also found that low social support at work had a main effect on CHD and could amplify the effect of job strain on CHD risk.\(^ {114,113}\)

Few of the previous studies were conducted among women. Table 7 shows studies using a prospective cohort or case-control design in women. A majority (five) of these studies found that women exposed to high job strain or one of its components had significant increases in CHD risk. Three evaluated job strain using the job title method,\(^ {1,86,88}\) which relies on the attribution of an inferred mean score to all women having the same job title.\(^ {223}\) This method may lead to misclassification of exposure in that it does not take into account the within-occupational variance that can be important in many occupations.\(^ {124,223}\) Misclassification may lead to an underestimation of the true effect, and may explain why studies using the job title method tended to show lower relative risk (1.3–1.6) than other studies (2.5–5.0).

In two of the four studies using the individual method (reporting by the subject of her job characteristics), the measure of psychological demands or decision latitude\(^ {140}\) was a proxy of the original job strain measure.\(^ {120}\) In a third study these measures were taken after the occurrence of the myocardial infarction.\(^ {197}\) Therefore, the

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Country</th>
<th>Study Design</th>
<th>Number of Subjects</th>
<th>Job Strain Evaluation Method</th>
<th>RR (95% CI or p Value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lacroix</td>
<td>1984</td>
<td>U.S.</td>
<td>Cohort</td>
<td>389</td>
<td>Individual</td>
<td>2.9 (p < .01)</td>
</tr>
<tr>
<td>Alfredsson</td>
<td>1985</td>
<td>Sweden</td>
<td>Cohort</td>
<td>319,365</td>
<td>Job title</td>
<td>1.6 (1.1–2.3)</td>
</tr>
<tr>
<td>Haan</td>
<td>1988</td>
<td>Finland</td>
<td>Cohort</td>
<td>902</td>
<td>Individual</td>
<td>5.0 (p = .03)</td>
</tr>
<tr>
<td>Hall</td>
<td>1993</td>
<td>Sweden</td>
<td>Cohort</td>
<td>5921</td>
<td>Job title</td>
<td>1.3 (0.9–1.8)</td>
</tr>
<tr>
<td>Hammar</td>
<td>1994</td>
<td>Sweden</td>
<td>Case-control</td>
<td>4667</td>
<td>Job title</td>
<td>1.3 (1.1–1.6)</td>
</tr>
<tr>
<td>Bouma</td>
<td>1997–98</td>
<td>England</td>
<td>Cohort</td>
<td>3413</td>
<td>Individual</td>
<td>1.7 (1.2–2.6)</td>
</tr>
<tr>
<td>Orth-Gomer</td>
<td>1998</td>
<td>Sweden</td>
<td>Case-control</td>
<td>584</td>
<td>Individual</td>
<td>2.5 (1.2–5.3)</td>
</tr>
</tbody>
</table>

(1) In the subsample of clerical women, the RR was 5.2 (p < .001).
(2) The study population includes both men (N = 603) and women (N = 299).
(3) RR for women exposed to low decision latitude only. The RR for women exposed to low work social support was of similar magnitude.
(4) RR observed for women exposed to low decision latitude only. The RR for job strain exposure was 1.1 (0.8–1.7).\(^ {20}\)
high risk found in these studies must be interpreted with caution. In Bosma’s study, the population was very specific (London civil servants); therefore the absence of an effect of job strain could be specific to this population. Similar limitations, and others not mentioned here, also are present in studies conducted in men. In two studies, an elevated risk was observed only for women exposed to low decision latitude, which parallels what has been noted previously in some studies of men. In the Hall, et al. study the combination of low decision latitude and low work social support seemed to be associated with higher risk. In several studies including both women and men, the effect of job strain on CHD risk tended to be of similar magnitude in both groups.

JOB STRAIN AND BLOOD PRESSURE

A number of studies have reported that workers exposed to high job strain had increased blood pressure. Studies conducted among women are presented in Table 8. Four out of six studies that used ambulatory measures of BP found an effect of job strain. Two studies that did not were conducted on very small samples of 64 and 22 women, and the percentage of participants was either not provided or very low (22%). Five of six studies using casual measures of BP at rest did not find an effect of job strain. These findings demonstrate that the type of BP measure is an important factor explaining the discrepancy in the results. Ambulatory BP measures: (1) take into consideration the normal BP level at work and outside work rather than the level measured in a clinic-type situation; (2) control for BP variability related to the observer or to the presence of medical personnel; and (3) may have about twice the precision of a single measure. In studies using ambulatory measures, women exposed to high job strain had increases in BP of 4–7 mmHg. A similar pattern of results has been observed in studies using ambulatory BP measures in men.

There is evidence that the effect of job strain on BP is persistent beyond working hours. For example, in the study by Laflamme, et al. among women holding a university degree, those exposed to high job strain had an average of 6 mmHg (p = .012) higher systolic BP than nonexposed women over the 24 hours of a working day (Fig. 4). The difference was, on average, 5.5 mmHg (p < 0.05) in the morning, 10.5 mmHg (p < 0.001) in the afternoon, and 8.5 mmHg (p = .005) in the evening.

There is also some evidence of a stronger effect when duration of exposure increases. Indeed, Laflamme, et al. measured job strain at two different times (T1 and T2) with a median of 14.4 months between the two measures. Among women holding a university degree, those with high strain at both T1 and T2 had a significant elevation in systolic BP of 7.7 mmHg (p = .001), on average, over the 24 hours when compared to women unexposed at both T1 and T2 (Fig. 5). Women exposed only at T1 and women exposed only at T2 had a slight but nonsignificant elevation in BP when compared to women unexposed at both times. These findings are consistent with a larger effect on BP when duration of exposure is prolonged, and with an effect that diminishes when exposure ceases. Such findings are consistent with those observed in a 3-year longitudinal study conducted in men.

Most available studies on job strain and BP are cross-sectional. The cross-sectional design is subject to differential selection and information bias. For example, it is plausible that individuals employed in high-stress jobs will tend to move, in time, to a low-stress job. Evidence of such a selection effect has been found.
TABLE 8. Effect of Job Strain on Blood Pressure in Women

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Country</th>
<th>Study Design</th>
<th>Number of Subjects</th>
<th>BP Evaluation Method</th>
<th>Differences in BP Between Exposed and Nonexposed (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theorell</td>
<td>1988</td>
<td>Sweden</td>
<td>Cohort</td>
<td>22</td>
<td>Ambulatory</td>
<td>N.S.</td>
</tr>
<tr>
<td>Chapman</td>
<td>1990</td>
<td>Australia</td>
<td>Cohort</td>
<td>534</td>
<td>Casual</td>
<td>N.S.</td>
</tr>
<tr>
<td>Nettersson</td>
<td>1991</td>
<td>Denmark</td>
<td>Cross-sectional</td>
<td>1209</td>
<td>Casual</td>
<td>−4 (N.S.)</td>
</tr>
<tr>
<td>Van Egeren</td>
<td>1992</td>
<td>U.S.</td>
<td>Cross-sectional</td>
<td>37</td>
<td>Ambulatory</td>
<td>4.0 (p = .04)</td>
</tr>
<tr>
<td>Light</td>
<td>1992</td>
<td>U.S.</td>
<td>Cross-sectional</td>
<td>64</td>
<td>Ambulatory</td>
<td>−2.2 (N.S.)</td>
</tr>
<tr>
<td>Theorell</td>
<td>1993</td>
<td>Sweden</td>
<td>Cross-sectional</td>
<td>56</td>
<td>Ambulatory</td>
<td>3.7 (p < .05)</td>
</tr>
<tr>
<td>Blumenthal</td>
<td>1995</td>
<td>U.S.</td>
<td>Cross-sectional</td>
<td>38</td>
<td>Ambulatory</td>
<td>N.S.</td>
</tr>
<tr>
<td>Greenland</td>
<td>1995</td>
<td>U.S.</td>
<td>Cross-sectional</td>
<td>601</td>
<td>Casual</td>
<td>0.2 (N.S.)</td>
</tr>
<tr>
<td>Carts</td>
<td>1997</td>
<td>U.S.</td>
<td>Cross-sectional</td>
<td>453</td>
<td>Casual</td>
<td>0.7 (−2.0–3.4)</td>
</tr>
<tr>
<td>Laframme</td>
<td>1998</td>
<td>Canada</td>
<td>Cross-sectional</td>
<td>71</td>
<td>Ambulatory</td>
<td>6.4 (p = .01)</td>
</tr>
<tr>
<td>Brisson</td>
<td>1999a</td>
<td>Canada</td>
<td>Cross-sectional</td>
<td>212</td>
<td>Casual</td>
<td>6.5 (1.1–11.9)</td>
</tr>
<tr>
<td>Brisson</td>
<td>1999b</td>
<td>Canada</td>
<td>Cross-sectional</td>
<td>3864</td>
<td>Casual</td>
<td>0.2 (N.S.)</td>
</tr>
</tbody>
</table>

N.S. = nonsignificant, N.A. = unavailable
(1) Differences between occasion with highest and lowest strain on four assessments during a 1-year followup.
(2) Study population includes both men (N = 664) and women (N = 545). Job strain evaluation based on job title yielded comparable estimates.
(3) Study population includes both men and women.
(4) Differences estimated from published article using corresponding multiple regression coefficients. Differences corresponded to an increase of 0.15 on job strain score as observed between female physicians (low) and waitresses (high) in a previous study.26
(5) Results observed among black women. Similarly, no effect observed among white women.
(6) Results observed among university-educated women (N = 71). No effect observed among women without a university degree (N = 139).
(7) Results observed in women who had children (N = 212). No effect observed in women without children (N = 150). For all women (N = 362), the difference was 4.1 (0.6–7.6) for diastolic BP. Similar trends observed for systolic BP, although not statistically significant.

Indeed, in that study, twice as many women moved to another job among women exposed to high strain (23.8%) as among those exposed to low strain (12.4%) at T1 (p = .003). If job strain is related to higher BP, this selection effect may lead to an underestimation of the true association in cross-sectional studies. The absence of an association among less-educated women also could be due to selection.

The increases in BP observed in women exposed to high job strain are clinically significant. Indeed, it has been demonstrated, in a meta-analysis of nine prospective studies conducted among women and men that a persistent elevation of 5 mmHg of diastolic BP increases the risk of strokes by 34% and the risk of coronary heart disease by 21%.26 The association between daytime ambulatory BP and these disease endpoints is stronger than that of casual BP.201
FIGURE 4. Hourly mean systolic blood pressure by current job strain exposure among white-collar women holding a university degree (1 mmHg = 0.133 kPa). (From Laflamme N, Brisson C, Moisan J, et al: Job strain and ambulatory blood pressure among female white-collar workers. Scand J Work Environ Health 24(5):334–343, 1998; with permission.)

WORKPLACE FACTORS AND CVD OUTCOMES

Little is known about the long-term effect of job strain on BP in women or men. Indeed, very few of the previous studies used a prospective design or evaluated the effect of exposure duration. Well-designed prospective studies are needed to evaluate the effect of prolonged exposure to job strain and the effect of exposure withdrawal on BP. The issue of exposure withdrawal is particularly relevant for assessing the potential benefits of intervention studies aimed at reducing job strain in the workplace.

JOB STRAIN AND OTHER CARDIOVASCULAR RISK FACTORS

Psychosocial factors at work may contribute to the risk of CVD by the adoption of unhealthy behaviors (e.g., smoking, sedentary activity, high fat intake).226 A number of studies found that some psychosocial factors at work were associated with the prevalence19,106,113,121 or the intensity41,90,176,203 of smoking; the prevalence of sedentary behavior98,113; and obesity.78,90 However, null results also have been observed.107,151,175,185,209 Studies largely are conducted among men. Only one previous study used a prospective design.131

In studies conducted among women, job strain was not consistently associated with CVD risk factors. None of the four studies on the association with smoking found an effect.31,82,98,186 However, the prevalence of smoking was associated with psychological demands in two studies.31,96 Two studies observed that women with high job strain had a higher BMI than nonexposed women.98,186 However, other studies failed to find an association.31,280 Job strain was not associated with cholesterol (total and HDL)186 or high fat intake.98 Brisson11 found an association between job strain and sedentary behavior, but Hellerstedt69 did not. Sedentary behavior was associated with lower decision latitude98,113 and with psychological demands.113 The two studies on plasma fibrinogen observed an association with high job strain186 and with low job control.56

TABLE 9. Effect of Job Strain and Family Load in White-Collar Women

<table>
<thead>
<tr>
<th>Time Period</th>
<th>High FL</th>
<th>High Job Strain</th>
<th>n</th>
<th>Systolic BP (mmHg)</th>
<th>Diastolic BP (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work 9h–16h</td>
<td>no</td>
<td>no</td>
<td>42</td>
<td>116.3 ± 1.2</td>
<td>74.3 ± 1.0</td>
</tr>
<tr>
<td></td>
<td>yes</td>
<td>no</td>
<td>7</td>
<td>119.7 ± 3.0</td>
<td>77.8 ± 2.4</td>
</tr>
<tr>
<td></td>
<td>yes</td>
<td>no</td>
<td>14</td>
<td>119.9 ± 2.1</td>
<td>76.3 ± 1.7</td>
</tr>
<tr>
<td></td>
<td>yes</td>
<td>yes</td>
<td>6</td>
<td>127.3 ± 3.2*</td>
<td>80.6 ± 2.6*</td>
</tr>
<tr>
<td>Evening 17h–21h</td>
<td>no</td>
<td>no</td>
<td>42</td>
<td>116.7 ± 1.2</td>
<td>74.4 ± 1.0</td>
</tr>
<tr>
<td></td>
<td>yes</td>
<td>no</td>
<td>7</td>
<td>119.1 ± 3.0</td>
<td>76.5 ± 2.4</td>
</tr>
<tr>
<td></td>
<td>yes</td>
<td>no</td>
<td>14</td>
<td>119.1 ± 2.1</td>
<td>74.9 ± 1.7</td>
</tr>
<tr>
<td></td>
<td>yes</td>
<td>yes</td>
<td>6</td>
<td>128.6 ± 3.3***</td>
<td>81.2 ± 2.6*</td>
</tr>
<tr>
<td>Night 0h–6h</td>
<td>no</td>
<td>no</td>
<td>42</td>
<td>98.6 ± 1.0</td>
<td>57.8 ± 0.9</td>
</tr>
<tr>
<td></td>
<td>yes</td>
<td>no</td>
<td>7</td>
<td>98.8 ± 2.5</td>
<td>58.0 ± 2.1</td>
</tr>
<tr>
<td></td>
<td>yes</td>
<td>no</td>
<td>14</td>
<td>100.2 ± 1.8</td>
<td>58.7 ± 1.5</td>
</tr>
<tr>
<td></td>
<td>yes</td>
<td>yes</td>
<td>6</td>
<td>105.4 ± 2.7*</td>
<td>63.4 ± 2.3*</td>
</tr>
<tr>
<td>All day (24 hours)</td>
<td>no</td>
<td>no</td>
<td>42</td>
<td>110.0 ± 1.0</td>
<td>68.4 ± 0.8</td>
</tr>
<tr>
<td></td>
<td>yes</td>
<td>no</td>
<td>7</td>
<td>112.5 ± 2.4</td>
<td>71.0 ± 2.0</td>
</tr>
<tr>
<td></td>
<td>yes</td>
<td>no</td>
<td>14</td>
<td>113.0 ± 1.7</td>
<td>69.9 ± 1.4</td>
</tr>
<tr>
<td></td>
<td>yes</td>
<td>yes</td>
<td>6</td>
<td>119.7 ± 2.6***</td>
<td>74.7 ± 2.2***</td>
</tr>
</tbody>
</table>

* p ≤ .05; ** p ≤ .01; *** p ≤ .001; FL = family load.
Values are means ± standard errors adjusted for age, smoking, and use of oral contraceptives. Exposed categories are compared with the reference category (first category of each variable). Significance of the differences is estimated by Student's t test.

JOB STRAIN AND FAMILY RESPONSIBILITIES

Several authors have reported that the high prevalence of job strain in women and its combination with large-family responsibilities may lead to high CV risk.72,85,96,117,123,160,226 In the Framingham study, employed women who had three or more children had a higher incidence of CV diseases than employed women who had no children or than housewives with three or more children.97 Frankenhaeuser has shown that among women managers, BP remained elevated in the evening after work, unlike men managers, who showed a decrease.72 Brisson, et al. found that, among women having children, those exposed to high strain had a significant increase in diastolic BP, while among women without children, little effect was observed.33

In another study, Brisson, et al. investigated specifically the combined effect of high job strain and large-family responsibilities on ambulatory BP.33 Significant effects were found among white-collar women holding a university degree (Table 9). The combined exposure of large-family responsibilities and high job strain tended to have a greater effect on BP than the exposure to either one of these factors. The combination of large-family responsibilities and high job strain was associated with higher systolic and diastolic BPs for all three periods (work, evening, and night), which also suggests a persistent effect beyond the work setting. Family responsibilities were measured with a composite index taking into account the presence of children, their age, and the proportion of domestic work performed. Further studies are needed to evaluate the combined effect of large-family responsibilities and high job strain on BP and the possible modifying effect of education on these associations.

Effort-Reward Imbalance at Work and Cardiovascular Outcomes

The Effort-Reward Imbalance Model was developed by Siegrist to explore adverse health effects of psychosocial factors at work. This model defines stressful experience at work as an imbalance between high effort spent and low reward received.233 Effort comes from two sources: an extrinsic source (the demands of the job) and an intrinsic source (the motivation of the individual worker). Rewards at work are distributed in money, esteem, and status control.233

In the Whitehall study, Bosma, et al. have observed that this model and the decision latitude dimension from Karasek’s model had independent effects,19 suggesting the complementarity of the two models. The Swedish WOLF Study found that women who exercised high effort at work but received not enough reward had a higher prevalence of hypertension than other women (adjusted OR 1.6, 95% CI, 0.9–2.7).302 This study also found that high intrinsic effort (overcommitment) was related to increased LDL-cholesterol in women (POR 1.4, 95% CI, 1.1–1.8).

Other Job Conditions and Cardiovascular Diseases

Shiftwork27,25,270 and long working hours64,95,274 have been associated with CVD in studies conducted among men. Few studies were conducted in women. In a case-control study, Knutsson, et al. found that women exposed to shiftwork had higher risk of MI than unexposed women (OR 1.3, 95% CI, 0.9–1.8 for women aged 45–70 and OR 3, 95% CI, 1.4–6.5 for women aged 45–55).134 Alfredsson, et al. reported that at 1-year followup, the SMR for hospitalization for MI was 131 (95% CI, 105–162) for women working in occupations with long working hours and 152 (95% CI, 119–191) for women in occupations with irregular working hours.7 For men, moderate overtime was a protective factor against hospitalization for MI. This gender difference could be explained by the fact that it may be more difficult for women to combine their family responsibilities with overtime.161,179
In another prospective study, the age-adjusted relative risk of CHD was 1.4 (95% CI, 1.1–1.8) in nurses who reported ever doing shiftwork. This excess risk persisted after adjustment for smoking and other CV risk factors. Among nurses reporting 6 or more years of shiftwork, the adjusted relative risk was 1.5 (95% CI, 1.1–2.0). Brugère, et al. have observed no association between shiftwork and the prevalence of hypertension among 8928 women followed by occupational medicine specialists.

HIGH-RISK OCCUPATIONS FOR CARDIOVASCULAR DISEASE
by Finn Tüchsen, MSc

The burden of CVD is unequally distributed across various occupations. The identification of occupational groups at high cardiac risk can be extremely helpful in generating etiologic hypotheses. Culpable single factors, e.g., exposure to carbon disulfide, and more complex psychosocial exposures, e.g., work comprising high psychological demand and low decision latitude, might be identified. However, combined exposures or some measure of total occupational burden (see Chapter 3) may best explain why certain occupations consistently show high risk of CVD.

Knowledge about occupational exposures and CVDs can be obtained from studies within a single occupation, insofar as there is sufficient variance, as well as from studies comparing one occupation with a reference occupation and studies comparing all occupations with a common standard. Each of these designs has strengths and weaknesses. The following pages focus on the latter study design.

Mortality and Morbidity Studies of “AIP” Occupations

EARLY STUDIES USING PROPORTIONAL MORTALITY RATIOS

Information from the Great Britain decennial census has been used together with national death registration data to study socioeconomic differences in mortality. The first study of disease-specific mortality by occupation was published in 1851, and since then updates have been published every 10 years. This design is not very reliable for CVD, however, because the proportional mortality ratio (PMR) measure should only be used for rare diseases. Another serious problem is that the occupational title is taken from the death certificate, and the title might be a consequence of the disease rather than a valid proxy measure for the occupational exposure. The most recent update illustrates clearly these methodological problems. For men, the occupation with the highest PMR was clergymen (PMR 120). The authors concluded: “The ranking of PMRs did not point to any obvious occupational hazards, and the jobs at the top of the ranking were not those that would be considered unusually stressful. Nor were they sedentary occupations.” The problem with this design is that CVD accounts for one third of the mortality of the men and 23% for the women. As expected, the differentiation in PMR was low among men and higher among women. The highest PMR found was 178 among female railway signal workers. Larger differentials were observed for rarer diseases, like stroke.

A NEW GENERATION OF STUDIES BASED ON CENSUS DATA

A new generation of mortality and/or morbidity studies based on census data in Denmark, Norway, Finland, and Sweden has successfully overcome the aforementioned shortcomings. Additional studies come from West
Germany27 and Western Australia.279 Information on occupation is collected prior to and independently of followup for death, and there is practically no loss to followup. While the Nordic studies followed the entire population, a comparable longitudinal study covering England and Wales was based on a 1\% sample.75 These cohort studies with a 5-year and later a 10-, 15-, and 20-year followup may control well for the "healthy worker" effect. Furthermore, some of them use the economically active and not the entire population as their standard population. This is especially important when studying CVD because of the very strong selection effect of these diseases.

Data from all five Nordic countries also have been pooled into one data set.150 The occupations had to be aggregated to 55 broad occupations because there were some differences in the detailed classifications between the countries. In Italy, a cross-sectional mortality study was published in 1995, together with a followup study of morbidity.69,271 Recently, Danish and Swedish data were pooled to obtain better estimates for occupations with few employees.5 The study supported the hypothesis that working in a brewery, canery, slaughterhouse, or dairy, or in the chemical, paper, or rubber and plastics industries may lead to increased risk of MI. Alfredsson, et al. also draw our attention to the large differences among occupational groups. In a case-control study including most of the Swedish population, they found a nine-fold higher risk in metal process workers (RR 2.8) than judges (R 0.3).145

All these studies may produce positive findings due to chance and multiple comparisons. One way to avoid such misinterpretations is to focus on the occupations found to be at high risk in more than one country or study (Table 10).

Professional Drivers: The Most Consistent Evidence of Elevated Risk. In these studies, professional drivers, particularly urban transport operators, emerge as the workers with the most consistent evidence of elevated risk. The high risk in bus drivers has been known for several decades. A recent review cites 34 of 40 studies as confirming the increased risk of ischemic heart disease and hypertension among professional drivers.16 These authors conclude: "Such a consistent and large body of data concerning cardiac risk does not appear to exist for any other specific occupational group." One particularly well-controlled study revealed that, after a mean of 11.8 years of followup, 103 middle-aged male mass-transit drivers in Gothenberg had an OR 3.0 (95\% CI, 1.8–5.2) for incident CHD compared to 6596 men from other occupational groups, after adjusting for age, serum cholesterol, BP, smoking, body mass index (BMI), diabetes, positive family history of CHD, leisure and occupational physical activity, and sociodemographic factors.223 Another study reported that the risk of hospitalization for stroke is also increased among professional drivers in Denmark.269 Compared to employed referents, the age-specific standardized hospitalization ratio was 114 (95\% CI, 108.2–120.4) among men and 130 (100–168) among women. Furthermore, there was a gradient of risk within the occupation that appeared to be stress-related. Netterstrom and Juel found that objective workload based on traffic intensity was a significant, independent predictor of acute MI incidence among bus drivers in Denmark.185 For high versus low traffic intensity, the RR was 2.7 (95\% CI, 0.9–7.6) in Copenhagen, and 3.4 (1.2–9.5) in the province.

Methodologic Issues

For some occupations there is conflicting or weak evidence about high risk. These null or negative studies underscore the need for more and better designed research. For example, there are conflicting findings concerning the risk in police. According to a study by Tüchsen and colleagues, it may only be higher ranking policemen who are at elevated risk for CVD.272 It is also helpful to detect low-risk
TABLE 10. Occupations at Increased Risk of Either Acute Myocardial Infarction or Ischemic Heart Disease Mortality or Morbidity in More than One Study

<table>
<thead>
<tr>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air traffic controllers</td>
<td>Lorry drivers</td>
</tr>
<tr>
<td>Bakers</td>
<td>Paper industry workers</td>
</tr>
<tr>
<td>Bus drivers</td>
<td>Police</td>
</tr>
<tr>
<td>Butchers</td>
<td>Prison wardens</td>
</tr>
<tr>
<td>Cannery workers</td>
<td>Rubber and plastics workers</td>
</tr>
<tr>
<td>Cooks</td>
<td>Ship's dock officers and</td>
</tr>
<tr>
<td>Fire fighters</td>
<td>Sea pilots</td>
</tr>
<tr>
<td>Fishermen</td>
<td>Taxi drivers</td>
</tr>
<tr>
<td>Foundry workers</td>
<td>Waiters</td>
</tr>
<tr>
<td>Hairdressers</td>
<td>Warehousemen, storekeepers</td>
</tr>
<tr>
<td>Bus drivers</td>
<td>Cleaners</td>
</tr>
<tr>
<td>Cleaners</td>
<td>Home help</td>
</tr>
<tr>
<td>Rubber and plastics workers</td>
<td>Paper workers</td>
</tr>
<tr>
<td>Self-employed in hotel and catering</td>
<td>Taxi drivers</td>
</tr>
<tr>
<td>Unskilled worker in tube, sheet, and steel construction</td>
<td>Waitresses</td>
</tr>
</tbody>
</table>

Lower limit of the 95% confidence intervals must have been > 1 for each study considered to be positive.

groups, to maximize the risk differences among occupational groups.\(^5,145\) Note, however, that the magnitude of the risk in such studies is not necessarily representative for the groups as a whole, because it depends on the precise definition of both the index group and the standard group.

The need for improved design also includes conducting quantitative studies of the various occupational exposures with variable degrees of exposure. There are few studies in this field that take exposure intensity and peak values into consideration. However, length of exposure has been a valuable variable in some studies. For example, the prevalence of hypertension among San Francisco Municipal Transit vehicle operators was found to increase "in a step-wise fashion" with length of exposure to that job.\(^2,14\) The increase from one category to the next (pre-employment, < 10 years, 10–20 years, > 20 years) controlling for age, race, gender, BMI, and alcohol

consumption showed OR 1.19 (95% CI, 1.0–1.41) for mild hypertension and OR 1.25 (1.03–1.52) for moderate to severe hypertension.

Future Analysis

One may expect that the next generation of occupational mortality and morbidity studies will focus on changes in relative risk over time. A recent study from Denmark demonstrates the potential in such analyses. An unexpected increase in inequality of CHD risk over time was found (Fig. 6). Bus drivers not only had a high risk, but the risk was increasing. These results convinced Danish authorities that a large-scale workplace health promotion program among bus drivers had to be initiated; such a program is now in progress in Copenhagen.

REFERENCES

WORKPLACE FACTORS AND CVD OUTCOMES

62. Steenland, ET AL.

WORKPLACE FACTORS AND CVD OUTCOMES

WORKPLACE FACTORS AND CVD OUTCOMES

212. Reference deleted.

WORKPLACE FACTORS AND CVD OUTCOMES

