THE WORKPLACE AND CARDIOVASCULAR HEALTH: CONCLUSIONS AND THOUGHTS FOR A FUTURE AGENDA by Karen Belkić, MD, PhD, Peter Schnall, MD, Paul Landsbergis, PhD, and Dean Baker, MD

We argued in the introduction that to adequately address the CVD epidemic, there is a need for a social epidemiologic approach that focuses on the workplace. Here, we briefly review the empirical, theoretical, and biological evidence presented earlier to demonstrate "convergent" validation that the relationship between workplace stressors and CVD risk is causal. The empirical findings are consistent with and predicted by the theoretical models, and the linkage between them is demonstrated to be plausible via biological mechanisms and experimental research. We then elaborate on new strategies, presented in the latter part of this book, for enhanced prevention and clinical management, workplace interventions, and social policy to reduce the impact of CVD.

EMPIRICAL EVIDENCE OF WORKPLACE EFFECTS ON CVD

In Chapter 2, we presented a substantial body of findings concerning the impact of workplace psychosocial, chemical, and physical conditions on CVD. The most consistent evidence is provided by research on sources of psychosocial stress at work, which are also the most prevalent risk factors. The most highly studied of these is work with high psychological demands coupled with low decision latitude, i.e., job strain. On the basis of empirical reviews focused on men and on women, as well as the recent review by the European Heart Network, and notwithstanding some studies with null results, the conclusion of Schnall, Landsbergis, and Baker that "a body of literature has accumulated that strongly suggests a causal association between job strain and cardiovascular disease" has been corroborated and strengthened. The data relating job strain to blood pressure and decision latitude to CVD outcomes are particularly compelling.

Besides consistency of association among studies, other evidence supporting causality has emerged. There are now data, albeit limited, suggesting a dose-response relationship between exposure to job strain or its major dimension(s) and both CVD and BP. New job strain cohort studies further confirm that exposure precedes outcome in time. Overall, of ten such studies in men, six show an increased CVD risk due to job strain or its components, and an additional two provide mixed results. Of five cohort studies among women, four demonstrate an elevated CVD risk related to job strain or its components.

Epidemiologic evidence of the plausibility of the relationship between job strain and CVD has expanded. Cross-sectional, as well as some longitudinal data,
linking exposure to job strain with elevated AmBP in men and women suggests one major mediating mechanism for this process. There are now cohort data demonstrating that a change in job strain exposure is associated with a change in BP. Furthermore, some data suggests an association between job strain and/or its major dimensions and other CVD risk factors, primarily smoking intensity in men, and possibly increased coagulation tendencies.

The magnitude of association between job strain and CVD typically range from risk ratios (RR) of about 1.2–2.0 for studies using imputed job characteristics (with resulting nondifferential misclassification bias towards the null), to 1.3–4.0 for studies using self-reported job characteristics. Associations are more consistent and stronger among blue-collar workers, with RR as high as 10. Systolic BP at work (as measured with an ambulatory monitor) among employees facing job strain is typically 4–8 mmHg higher than among those without job strain.

Another model of work stress, the Effort-Reward Imbalance (ERI) Model, also has been studied cross-sectionally and longitudinally, primarily in men. There are significant positive associations between high effort/low reward and elevated lipid levels, hypertension, and CVD, with magnitudes of effect similar to or even greater than in self-report job strain studies. A British study indicates that the effects of job control and ERI are statistically independent of each other in the prediction of CHD, and a currently unpublished Swedish study finds that the combined effects of exposure to job strain and to ERI on CVD are much stronger than the separate effects of each model.

There are also data indicating a relationship between threat-avoidant vigilant work and CVD. For example, in studies comparing occupations, professional driving, particularly urban transportation, emerges as the occupation with the most consistent evidence of elevated risk of CHD and hypertension (see Chapter 2). Such psychosocial factors may help to explain the nine-fold difference between high and low CVD risk occupations in men and a five-fold difference in women.

In addition to psychosocial job stressors, there is some evidence that work schedules and physical and chemical workplace hazards may increase the risk of CVD. Notwithstanding the difficulties involved in researching this area, a substantial body of longitudinal data implicates shift work as an independent CVD risk factor; however, there are also some well-designed cohort studies with null findings. Investigations of long work hours are more sparse, but quite consistently show a relationship to elevations in ambulatory and casual BP, and to CVD. In three fairly recent papers, the effect of long work hours independently of other workplace stressors was demonstrated with respect to increased BP and risk of MI. Finally, some support exists for a significant association between physical factors—most notably cold, heat, noise, and passive smoking—and hypertension and/or CVD. While sedentary jobs have been linked to CVD risk, certain patterns of workplace physical activity (e.g., irregular episodes of heavy physical exertion alternating with sedentary work), also are implicated in risk of MI. As to other physical factors, such as vibration and heavy lifting, physiologic data suggests that these may have an untoward effect on the CV system; however, epidemiologic data is extremely limited. Cardiotoxic chemical agents include: carbon disulfide (a well-established risk factor for CAD), nitrate esters (sudden cardiac death), carbon monoxide (myocardial ischemia, MI, sudden death, CHD mortality), lead and arsenic (possible risk factors for hypertension), and solvents (dysrhythmias, with methylene chloride giving a clinical picture similar to carbon monoxide).
CONCLUSIONS AND THOUGHTS FOR A FUTURE AGENDA

Population Attributable Risk, Occupational Factors, and CVD

Psychosocial, chemical, and physical exposures at the workplace, along with sedentary work, represent a major public health burden on working populations. We can calculate the population attributable risk (PAR%)—i.e., the reduction of incidence if the population were entirely unexposed to occupational risk factors for heart disease—to estimate the degree to which work-related factors account for the epidemic of hypertension and CVD. The PAR% calculations depend on two assumptions: (1) the prevalence of exposure, and (2) the strength of association between exposure and the outcome of interest. Thus, the PAR% results will vary greatly among population groups and study results, engendering some difficulty in generalization.

Since there is excellent data available for job strain, we can calculate some representative results. Using data from the Cornell Worksite and Ambulatory BP Study with an exposure rate to job strain of 20% and an odds ratio (OR) of 3 between job strain and hypertension, 28.6% of hypertension among working men in New York City could be attributed to job strain.* PAR% also have been calculated for European data on job strain and CVD. The European Heart Network cites Olsen and Kristensen, who used exposure to monotonous, high-paced occupations as a proxy measure for job strain, taking a very conservative estimate, and calculated PAR% for CVD as 6% for men and 14% for women in Denmark. However, when they estimated a total CVD burden for Danish workers due to occupational factors—job strain (but not ERI), sedentary work, physical and chemical exposures, and shift work—the PAR% was greater than 50%. A PAR% of 15.3% for CVD mortality due to isostress in the Swedish male working population can be calculated based on a reported OR of 1.9 and 20% exposure rate to isostress. In Europe as a whole the exposure to job strain may be as high as 30%, which would yield a similar or higher PAR% to that calculated for Sweden. A full discussion of the number of cases and the costs of CVD in the U.S. for various estimates of PAR% due to job strain is found in Chapter 11.

While the empirical evidence and PAR% calculations presented above demonstrate the effect of CVD of psychosocial risk factors, and there is additional data for work hours, shift work, and chemical and physical exposures, studies examining the combined or interactive burden of these factors are lacking. There is some evidence of an interaction between psychosocial stressors, such as between job strain and low social support, job strain and ERI, and high work demands and low economic rewards. However, we know little about the possible synergistic effects of combinations of various types of risk factors, except for a few studies such as that of Alfredsson, et al. showing an increased SMR for heavy lifting plus hectic work. Nonetheless, even without this knowledge, the evidence to date indicates that workplace risk factors account for an important burden.

THEORETICAL PLAUSIBILITY OF A PSYCHOSOCIAL CONNECTION

Psychosocial Models

The occupational health movements of the latter part of this century raised the concern that the modern work environment caused serious illness and injury. In the

* PAR% = Pe (RR-1)/1 + Pe(RR-1) where Pe is the exposure rate in the population as a whole, and RR is the risk ratio. OR may be substituted for RR.
1970s, psychosocial researchers began to address this issue with respect to CVD. As posed by Karasek and Theorell: “Did the social organization of work also cause serious physical illness? Without scientific evidence of such associations (evidence of job dissatisfaction would not suffice) the same political will to redress worker hazards could not easily be mustered. This evidence would be much more difficult to accumulate, however. In the case of physical occupational health hazards, such as in coal mining, the cause of injury was often obviously environmental, but for psychosocial risks work-related and nonwork-related factors were interlocked.” A critical obstacle was the theoretical conceptualization and modeling of workplace stressors.

A pioneering breakthrough came in 1979 with the publication of the Job Strain Model, based upon the premise that strain occurs when there is excessive psychological workload demands together with low job decision latitude (see Chapter 3). This appears to provoke arousal, as well as distress, activating both the sympathoadrenal and adrenocortical axes, a highly deleterious combination.

A third dimension, social support, was added later to the model. It was found that lack of social support at work interacted with job strain to substantially increase the risk of CVD. A variety of investigations, including cross-sectional and longitudinal observational population studies, intervention research, and animal experiments, have shown that social isolation and lack of social support are harmful to CV health.

More recently, the ERI Model was introduced by Siegrist and colleagues. In comparison to the Job Strain Model with its emphasis on moment-to-moment control over the work process (i.e., decision latitude), the ERI model provides an expanded concept, emphasizing macro-level long-term control through rewards such as career opportunities, job security, esteem, and income. The ERI Model posits that work stress results from an imbalance between these rewards and effort. Effort is seen to stem both extrinsically from the demands of the job and intrinsically from the individual’s tendency to be overly committed to these work demands.

Key dimensions are shared by the Job Strain and ERI Models: both control as well as challenge (demands) are an integral part of each. However, control varies—from micro (task) level in the former, to macro level in the latter. The nature of the challenge varies from model to model, but there is a challenge of some kind in each.

In addition to these two models, which have been well developed theoretically and empirically confirmed in relation to CVD, other promising formulations are emerging. One is the concept of threat-avoidant-vigilant work, which seems particularly relevant in understanding the stress of certain occupations at high CVD risk. Such work is onerous since it requires continuous maintenance of a high level of attention, in order to avoid the disastrous consequences that could occur with a momentary lapse or a wrong decision.

Social Class, Workplace Factors, and CVD

There is a considerable and consistent body of evidence of an inverse association between socioeconomic status (SES) and incidence and prevalence of CVD, primarily CHD (see Chapter 2). The higher CVD risk among men and women in lower SES groups, e.g., blue-collar workers, began to appear in the 1950s and has risen progressively over the period 1960–1993. These changes in CVD mortality rates among the blue-collar workers are paralleled by increasing income inequality, which differs greatly among countries, and is measured by the size of the income gap between the rich and the poor. Income
inequality profoundly affects overall mortality, although only a modest direct effect has been heretofore demonstrated for CVD. In the industrialized world, "it is not the richest countries which have the best health, but the most egalitarian." In the U.S., the "earnings distribution among workers has widened greatly and is the most unequal among developed countries." The role of work in relation to income inequality as a potential contributor to adverse health outcomes is an important area for future research. ERI would be a particularly suitable model to investigate these relationships.

As pointed out by Johnson and Hall, not only do "those in the upper levels of the professional and managerial hierarchy enjoy ample financial remuneration, they also have the right to exercise authority over others, to expect obedience and even subservience, and to enjoy prominent social position, the privileges of voluntary action and association, and the many ineffables of an affluent lifestyle." These authors elaborate that work control "varies systematically as a function of social class," SES usually is operationalized by education, income, and occupational status. The latter two factors are features of work. In fact, status at work, variety and scope for use of initiative and skill, and ability to exercise authority and control are some of the main ways by which SES is defined. In the Whitehall study, the distribution of job control was the major factor contributing to the socioeconomic gradient in CHD risk across civil service employment grade. In contrast to low job control, job strain has a weaker and, in some studies, null association with SES. However, job strain appears to interact with low SES. Job strain has a stronger association with CVD and with BP in workers of lower SES.

Not only are psychosocial workplace stressors, most notably low decision-making latitude or control, more prevalent among workers of lower SES, but these workers also are more frequently exposed to physical and chemical hazards that can impact upon the CV system. Shift work generally is more common among blue-collar compared to white-collar workers. Standard cardiac risk factors such as smoking, obesity, and lack of recreational physical activity also are more prevalent among those in the lower SES groups. These risk factors can be affected by an unhealthy workplace.

Thus, low SES is associated with a number of workplace factors that can impact upon CVD risk. These include low job control, exposure to shiftwork, and physical and chemical hazards. Persons in lower socioeconomic strata disproportionately receive inadequate wages and salaries, lack promotion prospects, and may face downward mobility. These factors likely contribute to an increased ERI among those in lower SES groups. Exposure to job strain is associated with a greater CVD risk among blue-collar, as compared to white-collar workers. Standard cardiac risk factors, often related to an unhealthy workplace, also are more prevalent in the former. These interrelations, explored in detail in Chapters 2 and 3, render the conclusion of Johnson and Hall that the realities of social class and work are "inextricably linked," of profound relevance to CV well-being.

Insights from Cognitive Ergonomics and Brain Research

Constructs such as job strain and ERI are based heavily on sociological theory. Cognitive ergonomics and brain research provide insights that complement these models, and provide a deeper understanding of dimensions such as psychological demand, control, and conflict. Thus, for example, when speaking of mentally demanding work, we can go far beyond queries about "working hard" and "working fast." With a more quantitative, objective appraisal of the burden of work processes,
and a better grasp of the possibilities and limitations of the human central nervous system, a more rational approach to work design emerges. By analyzing tasks in terms of allocation of mental resources, we can better determine what is too much (leading to overload), what is too little (leading to underload), what is incoherent or contradictory (leading to conflict), etc. A critical ratio is that between “knowledge-based” labor processes, which require conscious attentional resources, and those that are “skill-based,” which can be performed in parallel and feature rapid, smooth, learned, and highly integrated patterns.15,47 We also can pinpoint how to promote the worker’s autonomous control, not only to meet the moment-to-moment exigencies of the situation, but, ideally, to be in harmony with his/her own needs, as well. Simply stated, this knowledge can help humanize the work process. Examples of the practical implementation of this approach are provided in Chapters 3 and 6.

Cognitive ergonomics and brain research also illustrate that emotional dimensions of human labor impact profoundly on mental burden. For survival reasons, our nervous systems are constructed to selectively allocate mental resources to potentially harmful stimuli, even if the threat is purely symbolic. It is essential to take into account the often hidden burden represented by threat-avoidant vigilant activity. Neurophysiologic studies demonstrate that imminent threat of an accident in the symbolically represented traffic milieu is associated with an unusually high level of selective attention. To avoid such situations, compensatory allowance, especially increased time allocation, must be included in the work planning “equation.”

There is a need for psychometric tools that account for the total burden of work stressors, using a cognitive-ergonomic approach, and with relevance to CVD risk. The Occupational Stress Index3 represents one such possible tool. Potential multiplicative interactions and higher-level terms should be explored within that model and more generally. The burden of unpaid labor, which is disproportionately performed by women, also must be considered.

BIOLOGICAL PLAUSIBILITY OF A WORKPLACE–CVD RELATIONSHIP

A large body of evidence indicating that occupational stressors can profoundly impact numerous pathophysiological processes, resulting in CV dysfunction and disease, has been presented. As described in Chapter 4, experimental animal studies implicate central stress mechanisms in cardiac electrical instability, as well as in hypertension, disorders of heart beat dynamics, and atherogenesis. The reader also is referred to the very recent paper by Rozanski, Blumenthal, and Kaplan, which reviews how psychosocial factors can affect the pathogenesis of CVD.56

Stressors most often provoke a defense response, and, in extreme cases, the defeat reaction. These responses, which in the worst situation may both be operative in turn, can activate the sympatho-adrenomedullary and hypophyseal-adrenocortical pathways, respectively. Empirical studies have demonstrated an association between numerous work stressors and elevations in catecholamines and cortisol.

Direct empirical confirmation, based on epidemiologic and field studies at the workplace, is not available for all of the pathways. Of the processes discussed in Chapter 5, the most attention has been paid to exposure to job strain in relation to elevation in BP and development of hypertension. Here, cross-sectional and longitudinal ambulatory BP data clearly show that hypertension can arise as a result of chronic exposure to job strain. Plausible stress mechanisms that can lead from elevations in BP to chronic hypertension include changes in vascular resistance, as well as renal mechanisms. The relationship among chronic exposure to job strain,
CONCLUSIONS AND THOUGHTS FOR A FUTURE AGENDA

elevations in workplace AmBP, and increased left ventricular mass also has been empirically confirmed.

Metabolic changes, including hyperlipidemia and heightened coagulation tendency, together with an increased progression of carotid atherosclerosis, have been linked to aspects of stressful work, especially ERI. A risk for the combined occurrence of hypertension and hyperlipidemia, characteristic of CV metabolic syndrome, has been associated with ERI. CV metabolic syndrome appears to be driven by augmented sympathetic outflow. Further attention is needed to the relation between work stressors and the occurrence of hemodynamic and biochemical abnormalities characteristic of this syndrome.

As to myocardial ischemia, the biological mechanisms generally are well-defined, and many are related to workplace factors (e.g., increased double product [heart rate × SBP], left ventricular hypertrophy, atherosclerosis). Mental stress in the laboratory has been consistently shown to provoke myocardial ischemia in patients with stable ischemic syndromes. However, field studies of myocardial ischemia in relation to workplace stressors are exceedingly sparse.

We also know quite a bit about the stress mechanisms that can lower cardiac electrical stability. Until recently, however, the possibilities for noninvasive ambulatory monitoring to detect the electrically vulnerable myocardium before sudden cardiac death occurred were limited. Neither the quantity nor the pattern of ventricular extrasystolic activity proved sufficiently predictive. With more advanced technologies, it is now feasible to simultaneously follow several ECG parameters that impact on cardiac electrical stability (ST segment, heart rate variability, QT interval), together with ventricular arrhythmias, during work. Furthermore, studies of patients with automatic implantable cardioverter defibrillators (AICD) could examine job-related exposures, providing direct information about the potential for workplace factors to trigger life-threatening tachyarrhythmias. We do know that AICD fire significantly more on Mondays, suggesting a relation to work activity.

There is some empirical evidence of a septadomian overrepresentation of Mondays vis-à-vis cardiac events. The early morning hours, during which several preconditions for plaque rupture and thrombus formation are present, are known to he the period of highest risk for these events. In the morning hours after waking, systolic BP increases by about 20–30 mmHg, heart rate and vascular tone rise, platelets are hyperreactive, while fibrinolytic activity is at its low. Sympathetic activation occurs upon assuming the upright position, and in the early morning cortisol is at its peak. This can result in a glucocorticoid-related increase in coronary-artery sensitivity to catecholamine-mediated vasoconstriction. The epidemiologic and biological data, taken together, indicate that the stress of work after a weekend of respite may precipitate acute cardiac events among working patients. Psychosocial, physical, and chemical factors, along with long and irregular work hours, can chronically promote the underlying pathological processes, as well as act as trigger mechanisms for acute cardiac events.

CONVERGENT VALIDATION OF THE CAUSAL LINK

The theoretical constructs of how workplace factors affect the development of CVD are corroborated by the large body of empirical data confirming this relationship. We have suggested the term “econeurocadiology” (see Chapter 4) to represent the biological paradigm by which social factors, such as work stress, are perceived and processed by the central nervous system, resulting in pathophysiological changes that increase CVD risk. All told, the biological and theoretical plausibility
of this view, coupled with the empirical evidence, provides convergent validation for the conclusion that environmental stressors from the workplace play an important role in the development of CVD.

There is a need for intervention studies as the strongest evidence for causality. These studies also provide practical experience and techniques for implementing changes at the worksite and evaluating their effectiveness. More longitudinal data with assessment of cumulative exposure and changes in exposure is needed, as well. To know where to intervene, the prevalence of both cardiotoxic exposures and CVD must be mapped—i.e., surveillance. Such a map will facilitate the identification and management of individual exposed workers with varying CVD severity, who may benefit from clinical intervention.

There remain a number of methodologic issues for resolution (see Chapters 6 and 7). These include the need for refined measurement tools of the Job Strain and BRI Models. Improved reliability and validity of exposure assessment would be obtained through “triangulation”—the use of self-report methods complemented by imputation—and by data from observers, whenever possible. Improved outcome assessments with earlier detection at the preclinical level can now be realized by noninvasive monitoring techniques applicable in field studies at the workplace. More examination also is warranted as to how circumstances of occupational life affect behavior patterns, such as hostility and overcommitment, which can in turn, affect CVD risk.

CURRENT STATUS AND FUTURE DIRECTIONS

Implications for Clinical Practice: Advancing the Discipline of Occupational Cardiology

Unlike several other medical subspecialties (e.g., pulmonology), for cardiology the workplace has yet to become an integral consideration. Consequently, there are few guidelines (with the exception of those related to physical activity levels) to help clinicians make informed recommendations concerning occupational factors, as these pertain to patients with various degrees of CVD severity. In Chapters 8 and 9, we offer physicians and allied health professionals a practical set of tools for the evaluation and management of working people at risk. First, taking an occupational history as it relates to the CV system is imperative, and an approach is outlined to help clinicians accomplish this. Next, a graded, risk-stratified algorithm is proposed for an occupational cardiology assessment of patients whose jobs could be harmful to the CV system. High-risk, but still preclinical patients are identified, and a set of diagnostic steps is proposed. This work-up can serve to guide clinicians in making specific recommendations concerning working conditions. Ambulatory monitoring is particularly helpful for objectively determining which workplace modifications are most conducive to the patient’s CV well-being.

Return to work (RTW) after cardiac events (see Chapter 9) is an especially delicate question. The cardiologic caregiver must evaluate the full clinical picture, including symptoms and morphological and functional status, as well as address complex personal, psychological, social, economic, legal, and ethical issues. The importance of job characteristics is illustrated by the existing, albeit limited, longitudinal data, showing that return to high-strain work is a significant predictor of mortality in young men post-MI, independent of clinical indices.65 Notwithstanding the need for large-scale clinical investigations of this type, these findings should prompt the clinician to raise the question posed by Theorell and Karasek: “Should
heart attack patients return to stressful jobs.” A similar query could be relevant, as well, to patients with hypertension (see Chapter 10), especially in light of the Cornell Worksite Ambulatory Blood Pressure Study, which indicates that changing from a high- to low-strain job was associated with a sizable fall in AmbBP among such patients.

Workers whose cardiac status represents a public safety issue (see Chapter 9) raise another difficult issue, frequently related to RTW. The clinician must render an estimation of risk for the occurrence of cardiac or other events that could lead to impaired consciousness. Airline pilots have received the most stringent evaluation in this regard, but these issues also pertain to operators of ground transport and other heavy machinery and to workers whose jobs entail threat-avoidant vigilant activity. An expanded occupational public health role of the clinician could be crucial in this particular realm. Clinicians, together with occupational ergonomists and other specialists, must have greater influence to recommend and implement cardio-protective guidelines about work conditions for these jobs. As it stands now, the clinician is repeatedly faced with the dilemma of making a judgement about the individual's CV work fitness, often knowing full well that the job itself is cardionous. A more proactive approach offers the possibility of ameliorating this ethical dilemma.

A public health perspective is vital for the clinician to effectively protect his/her patients exposed to cardionous work. The clinician must be on the alert for the occurrence of unexpected patterns or clusters of CVD. Historically, in other medical disciplines, the physician often has been among the first to identify occupationally associated diseases, with resultant major changes in the work environment. However, for a number of reasons (see Chapter 10) clinicians typically have not been the ones to herald the occurrence of clusters of job-related CVD. There is an urgent need to incorporate the concept of an occupational sentinel health event into the mainstream of cardiology.

The clinician also can play an important role in evaluating CV health impact of changes in the work environment and worksite health promotion programs, including individual stress management. The physician may be in a unique position to help transform an adversarial situation to a cooperative relationship, and thereby to represent a stabilizing force. Cooperation among the various participants in the work process (e.g., labor, management, occupational hygienists, engineers, economists) can be promoted by the authority of the clinician, whose interest is first and foremost the well-being of his or her patients.

Current Trends in Working Life

As we embark upon the 21st century in the United States, despite a booming economy, much prosperity, and relatively low unemployment rates, there is a large and growing income disparity, and working conditions are deteriorating for many. Working men and women are putting in longer work weeks and are increasingly exposed to job conditions that can undermine CV health. In Europe, in 1996, 23% of those employed were working more than 45 hours/week. In the U.S., average weekly work hours increased by 3.5 to 47.1 hours from 1977 to 1997. Workers in the U.S. have now surpassed Japanese workers in total number of hours worked per year, and work longer hours than in any other industrialized country.

Substantial changes in job characteristics have occurred over the past generation in industrialized countries. In Europe, surveys indicate an increase in “time constraints” (i.e., workload demands) between 1977 and 1996. Similarly, in the U.S., increases between 1977 and 1997 were reported for “working very fast” (from 55%
to 68%) and “never enough time to get everything done on my job” (from 40% to 60%). Somewhat augmented job decision latitude also has been noted. In Europe, the proportion of workers reporting a measure of autonomy over their pace of work rose from 64% in 1991 to 72% in 1996. In the U.S. “freedom to decide what I do on my job” increased from 56% in 1977 to 74% in 1997, and “my job lets me use my skills and abilities” rose from 77% in 1977 to 92% in 1997. However, at least in Europe, increases in autonomy were not sufficient to compensate for heightened work intensity. The combination of augmented demands and little or no rise in control over the work process results in an increased exposure to job strain. The proportion of high-strain jobs in Europe increased from about 25% in 1991 to about 30% in 1996. Unfortunately, there is no published data on the percentage of the U.S. working force experiencing job strain currently. However, as described above, employed men and women are working harder and longer today than they did 25 years ago.

Paralleling these trends in working conditions, and in large part responsible for them, new systems of work organization have been introduced by employers throughout the industrialized world to improve productivity, product quality, and profitability. Such efforts have taken a variety of forms and names, including lean production (e.g., Japanese Production Management), total quality management, cellular or modular manufacturing, and high-performance work organizations. These new systems have been extolled as reforms of Taylorism and the traditional assembly-line approach to job design.

According to a report from the U.S. Departments of Labor and Commerce, over “80% of American workers want a say in decisions affecting their jobs and how their work is performed.” The traditional method by which employees have influenced working conditions, including job stressors, is through the establishment of labor unions. This is an example of the exercise of “collective control” a strategy often utilized when prospects for exerting control individually at work are limited. However, in the U.S. the proportion of employees who are members of labor unions has declined sharply in the past 40 years.

Perhaps one explanation for the rapid increase in lean production techniques is the weakened position of labor unions. As a consequence, the labor movement in the U.S. has not been able to greatly influence the enactment of legislation to improve psychosocial working conditions/reduce job strain, such as was accomplished in Scandinavia, nor has it been able to prevent the decline in real income for lower SES employees.

Weakened unions also have been unable to prevent employers from implementing aspects of lean production such as downsizing, outsourcing to low-wage suppliers, 24-hour operations, compressed work weeks, increased overtime, contingent work, and workforce flexibility. Such trends may help explain increases in time constraints and workload demands reported in European and U.S. surveys over the past 20 years. Downsizing and excessive overtime can have dramatic negative effects on employee health. These trends, which result in increased job strain and ERI, contribute to CVD risk differences between upper and lower SES groups and to the minimal or no recent decline in CVD incidence, especially among lower SES workers.

One of the consequences of lean production is the progressive disappearance of “passive” and “relaxed” jobs, with the four quadrants of the Job Strain Model collapsed into two: active versus high-strain jobs. Previously passive jobs are now accelerated (e.g., housekeepers in hotels carry phone equipment and upon completion of a task must immediately report to a supervisor for the next assignment; security
CONCLUSIONS AND THOUGHTS FOR A FUTURE AGENDA

workers are routinely assigned to other tasks while simultaneously being on guard. Those who had relaxed jobs, such as some college professors/scientists, now face increasing teaching loads and incessant deadlines for grant proposals. This process of work intensification, if unchecked, may well contribute to a further sharpening of class boundaries: people will tend to be in one of two types of occupations—characterized by high or low levels of decision authority but all with high demands. According to the U.S. Departments of Labor and Commerce, “The stagnation of real earnings and increased inequality of earning is bifurcating the U.S. labor market, with an upper tier of high-wage skilled workers and an increasing ‘underclass’ of low paid labor.” At the same time, traditionally autonomous self-employed workers (e.g., physicians and attorneys in private practice, single shop owners) are disappearing. Physicians are working harder and are experiencing progressive loss of their decision-making authority in the setting of corporate managed care.

Leisure time is eroding, and work and home life are blending. The average U.S. married-couple family worked 247 more hours in 1996 than in 1989. The quality of family life is severely compromised under these circumstances. According to a national U.S. survey in 1997, “Employees with more difficult, more demanding jobs and less supportive workplaces experience substantially higher levels of negative spillover from work into their lives off the job—jeopardizing their personal and family well-being.”

Implications for Public Health Policy

The evidence that psychosocial exposures are important in the etiology of hypertension and CVD and that these exposures may well be on the increase has serious implications for public health. These exposures also can affect a range of other health outcomes, including repetitive motion injuries; alterations in the immune system; adverse pregnancy outcomes; including pregnancy-induced hypertension; and negative psychological effects, such as anxiety, burnout, passivity, and depression. Increased rates of disorders such as repetitive motion injuries could be the “canary in the coal mine”—a possible warning of future hypertension and CVD.

SURVEILLANCE

According to the authors of the recent Tokyo Declaration, we need to institute a program of “surveillance at individual workplaces and monitoring at national and regional levels in order to identify the extent of work-related stress health problems and to provide baselines against which to evaluate effects at amelioration. They recommend that workplaces assess both workplace stressors and health outcomes known to result from such exposures... on an annual basis.”

Worksite screening should obtain prevalence data on cardionoxious exposures (e.g., job strain) and on work-related CVD. Worksite point estimates of BP (see Chapter 7) would be particularly useful, being inexpensive and relatively simple to obtain, with ambulatory BP monitoring performed whenever possible. Holter monitoring is needed to survey the prevalence of silent myocardial ischemia, and to assess other sensitive, noninvasive parameters such as heart rate variability. Carotid ultrasound is also an invaluable screening tool. The incidence of CVD events and standard cardiac risk factors should be systematically registered. Since many large companies require annual physical exams and collect much of the relevant data, it should be a relatively simple task to enter this information into a database and make it available to those concerned with worker health. Appropriate precautions to protect employee confidentiality must always be observed.
INTERVENTIONS

Worksites identified as high risk for CVD should be targeted for interventions (see Chapter 13). Primary interventions would focus on creating a healthy workplace. For example, high-strain jobs could be redesigned to provide optimal levels of employee decision-making latitude and skill discretion, and workloads could be realistic, compatible with human capacity. Since the workplace appears to be a "leverage point" with regard to standard CVD risk factors (see Chapter 10), such interventions could have the additional benefit of lowering these risk factors.

A number of worksite intervention studies have specifically focused on reducing stressful features of work organization, and several have measured changes in CVD risk factors. Two Swedish studies exemplify interventions with some successes:

1. Employees of a large government agency participated in an intervention which included worker committees that developed and carried out action plans to reduce sources of workplace stress. A significant decrease in apolipoprotein B/apo- lipoprotein AI ratio occurred in the intervention group but not in the control group, an effect which could not be explained by smoking, eating, exercise, weight or other lifestyle factors. Stimulation from and autonomy over work significantly increased in the intervention group but remained the same in the control group.20

2. Researchers examined a new auto assembly work organization which contained small autonomous work groups having much greater opportunities to influence the pace and content of their work than either traditional assembly work or the Japanese management method of "lean production." Workers in the flexible sociotechnical systems organization did not show increases in systolic BP, heart rate, and adrenalin e during their work shift as did workers on a traditional assembly line. In addition, catecholamines showed more rapid "unwinding" (toward non-workday baseline levels) after work in the flexible organization, particularly for female workers.43

The workplace is also a good setting for interventions aimed directly at traditional risk factors, e.g., dietary interventions by improved nutrition in cafeterias, exercise programs, and medical treatment (e.g., for hypertension).

LEGISLATION

We will need societal measures to support the above initiatives. Japan and much of Western Europe have taken the lead in passing legislation making certain forms of work stress illegal and mandating healthy work. An example is the Swedish Work Environment Act (Act No. 677, amended in 1991) which states:

- Working conditions shall be adapted to people's differing physical and psychological circumstances.
- Employees shall be enabled to participate in the arrangement of their own job situations as well as in work changes and development that affect their jobs.
- Technology, work organization, and job content shall be arranged so that the employee is not exposed to physical or mental loads that may cause ill health or accidents.
- The matters to be considered in this context shall include forms of remuneration and the scheduling of working hours.
- Rigorously controlled or tied work shall be avoided or restricted.
- It shall be the aim of work to afford opportunities for variety, social contacts, and cooperation, as well as continuity between individual tasks.
- It shall further be the aim for working conditions to afford opportunities for personal and occupational development as well as for self-determination and occupational responsibility.
A prerequisite to implementing a “healthy work” policy is the establishment of a system of workplace surveillance to identify high-risk work environments. This, however, remains to be achieved on a broad scale.

Secondly, we may need legislation intended to provide companies with incentives to accomplish these goals. This could include a national tax on companies with excess levels of job-related risk factors and/or CVD outcomes (see Chapter 11). In this way, businesses would be encouraged to reassess their workplaces to lower job strain and other cardioonious exposures.

Finally, in the U.S. we will need national legislation mandating a healthy workplace, similar to the laws passed in Europe and Japan (see Chapter 12).

We concur with the conclusions of the American Heart Network on Social Factors, Work, Stress, and Cardiovascular Disease in the European Union that “the substantial scientific basis of the association of psychosocial factors and cardiovascular disease risk... (should) ensure that social, occupational, and individual factors will not be left off the health agenda.” These protective steps are important to reduce the likelihood that working men and women are exposed to cardioonious risk factors at the workplace. They recognize that today’s stressful jobs are the result of human design and thus amenable to change. But taken as a totality the steps outlined above are basically a defensive strategy which fails to address the human need for fulfilling work, work that satisfies human needs for dignity, creativity, and a sense of worth.

We have now reached the point where it is possible to design work that promotes health and well-being. It is not demanding work per se that is harmful, but work without control over how one meets the job demands or uses one’s skills. Tomorrow’s jobs will be deliberately crafted to allow the full development of the human spirit through work which encourages—not discourages—human potential. This means creating a work environment that is conducive to human mental and physical health. A key characteristic of a “health-liberating” work environment will be the full participation of all working people in the decision-making processes surrounding the organization of work.

Note: Some material adapted by permission from Landsbergis, et al; reference 36a. Copyright 1999 by the Educational Publishing Foundation.

REFERENCES

CONCLUSIONS AND THOUGHTS FOR A FUTURE AGENDA

<table>
<thead>
<tr>
<th>Index Entry</th>
<th>Page(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accidents, health-related, 227, 228</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acquired Immunodeficiency syndrome (AIDS), 265</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adrenergic activity, in hypertension, 127</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-Adrenoceptors, catecholamine-induced stimulation of, 147</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adrenocorticotropic hormone (ACTH), 142</td>
<td></td>
<td></td>
</tr>
<tr>
<td>African Americans, hypertension in, 121, 194</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airplane pilots, health-related incapacitation of, 227</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alarm reaction, 139. See also Defense reaction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albertson, Inc. vs. WCAB, 283</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcohol use, as hypertension risk factor, 196</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alienation, 75–77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambassador Program, 252</td>
<td></td>
<td></td>
</tr>
<tr>
<td>American College of Physicians, cardiac syncope risk guidelines of, 227–228</td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Conference of Governmental Industrial Hygienists, biological exposure index of, 274</td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Heart Association, 233</td>
<td></td>
<td></td>
</tr>
<tr>
<td>return-to-work guidelines of, 228</td>
<td></td>
<td>statement on job stress-cardiovascular disease relationship, 32</td>
</tr>
<tr>
<td>American National Standards Institute,</td>
<td></td>
<td>Ergonomic Standard of, 277–278</td>
</tr>
<tr>
<td>Amygdala, in defense response, 111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azabolism, 140</td>
<td></td>
<td>inhibition of, 145</td>
</tr>
<tr>
<td>Angina</td>
<td></td>
<td>carbon monoxide exposure-related, 22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prinzmetal, 133</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vasospastic component of, 133</td>
</tr>
<tr>
<td>Angioplasty</td>
<td></td>
<td>coronary, return to work following, 224</td>
</tr>
<tr>
<td></td>
<td></td>
<td>percutaneous transluminal, 2</td>
</tr>
<tr>
<td>Angiotensin II, 156</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anomia, 74, 77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anticipatory avoidance response, 94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony exposure, cardioxicity of, 202</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arrhythmia</td>
<td></td>
<td>chemical exposure-related, 23–24, 119–120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>coronary artery occlusion-induced, 119</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fatal. See also Sudden cardiac death neural stimuli in, 107, 110</td>
</tr>
<tr>
<td></td>
<td></td>
<td>respiratory sinus, 199–200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>solventis-related, 23–24</td>
</tr>
<tr>
<td>Arsenic</td>
<td></td>
<td>arsenic cardioxicity of, 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>as hypertension cause, 122</td>
</tr>
<tr>
<td>Artery And the Process of Atherosclerosis: Measurement and Modification report, 107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asbestosis, 248</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atherogenesis, 136–138</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atherosclerosis, 1 effort-reward imbalance as risk factor for, 40, 43</td>
<td></td>
<td>job strain as risk factor for, 32–33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>psychosocial factors in, 40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Atrial fibrillation, chlorofluorocarbon-related, 23 AT&T, 289</td>
</tr>
<tr>
<td>Autonomic imbalance, as cardiac electrical destabilization cause, 117–118</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacterial infections, as coronary heart disease risk factor, 137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Behavioral factors, in cardiovascular disease, 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bell Atlantic, 289</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta blockers effect on insulin resistance, 148</td>
<td></td>
<td>as return to work contraindication, 228–229</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biofeedback, for stress management, 232, 240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biological exposure index, 274</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biopsychosocial model, of illness, 72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Black Lung Trust Fund, 266</td>
</tr>
<tr>
<td>Blood flow</td>
<td></td>
<td>coronary, effect of mental stress on, 134</td>
</tr>
<tr>
<td></td>
<td></td>
<td>renal, in hypertension, 128</td>
</tr>
<tr>
<td>Blood pressure, See also Hypertension basal, 204–205</td>
<td></td>
<td>circadian patterns in, 120, 194</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in shift workers, 10, 12</td>
</tr>
<tr>
<td>Blood pressure measurement</td>
<td></td>
<td>ambulatory, 191, 194–195, 298–299, 313</td>
</tr>
<tr>
<td></td>
<td></td>
<td>effect of job strain on, 196</td>
</tr>
<tr>
<td></td>
<td></td>
<td>use in return-to-work decision-making, 224–225</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in women, 52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>auscultatory method, 191–192</td>
</tr>
<tr>
<td></td>
<td></td>
<td>devices used for, 193</td>
</tr>
<tr>
<td></td>
<td></td>
<td>false negatives and false positives in, 205–206</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oscillometric method, 192, 193, 195</td>
</tr>
<tr>
<td></td>
<td></td>
<td>point estimates in, 203–208, 317</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rationale for, 203–204</td>
</tr>
<tr>
<td></td>
<td></td>
<td>with self-monitoring, 193, 194</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"white coat" effect in, 191, 194, 204, 205</td>
</tr>
<tr>
<td>Blood viscosity, 147</td>
<td></td>
<td>Body mass index</td>
</tr>
<tr>
<td></td>
<td></td>
<td>job strain-related increase in, 39–40, 247</td>
</tr>
<tr>
<td></td>
<td></td>
<td>effect of smoking on, 55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bradycardia, 202–203</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bureaucracies, 76–77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Burnout, 139</td>
</tr>
<tr>
<td>CAD. See Coronary artery disease</td>
<td></td>
<td>California, workers' compensation cases in, 282–283, 284</td>
</tr>
</tbody>
</table>

323
California Nurses’ Association, 287
California Standard on Repetitive Motion Injuries, 276
Carbon disulfide exposure
assessment of, 274
cardiotoxicity of, 20, 21
as ischemic heart disease risk factor, 257, 295
limits for, 273
Carbon monoxide exposure
cardiotoxicity of, 20, 21–22
coronary artery disease-exacerbating effect, 257
effect on myocardial oxygen supply, 134
in returning-to-work cardiac patients, 226
as sudden cardiac death cause, 119–120
limits for, 274
Carboxyhemoglobin levels
carbon monoxide exposure-related increase in,
22
in coronary artery disease, 134
Cardiology, occupational, 314–315
Cardiovascular disease, See also Coronary artery
disease (CAD); Coronary heart disease (CHD); Ischemic heart disease (IHD); Myocardial infarction; Myocardial ischemia
acquired, 113–114
asymptomatic, 190
epidemiology of, 257–260
high-risk occupations for, 57–60
incidence and prevalence of, 1
age factors in, 262
calculation of, 259–260
as morbidity cause, 1
as mortality cause, 1, 258–259, 261, 262, 265
prevention of, 1–2
proximate causes of, 2, 246
symptoms of, under- and over-reporting of, 190
unidentified causes of, 2–3
work-relatedness of
biological plausibility of, 312–313
convergent validation of, 313–314
empirical evidence for, 307–309
implication for clinical practice, 314–315
implication for public policy, 317–319
population attributable risk in, 309
Cardiovascular metabolic syndrome, 135, 145
146–150, 205, 218, 220, 313
fibrolysis decrease associated with, 147
hypercoagulability associated with, 147–148
platelet dysfunction associated with, 147–148
Cardiovascular system, relationship with central nervous system, 2
Caregivers, for cardiovascular disease patients, 264
Carotid sinus syndrome, 203
Case-control studies
of job strain-hypertension relationship, 36
of job strain-ischemic heart disease relationship, 26–27
of socioeconomic status-cardiovascular disease relationship, 49
in workplace intervention research, 294
Case-only studies, in workplace intervention studies, 294
Case reports, in workplace intervention studies, 294
Catabolism, 140
Catecholamines
in alarm reaction, 139
arrhythmogenicity of, 117–118
as blood pressure increase cause, 125, 128, 129, 146, 147
as cardiovascular disease risk factor, 113
measurement in blood and urine, 140–142
effect on serum cholesterol levels, 147
stress-related urinary excretion of, 149–150
sympathetic nervous system-mediated secretion of, 147
Census data, 57–58, 172–173
Central nervous system. See also
Echocardiographic mechanics of, 71
relationship with cardiovascular system, 2
CHD. See Coronary heart disease
Chemical exposure. See also specific chemicals as cardiovascular disease risk factor, 20–24
collective bargaining agreements regarding, 288
as hypertension cause, 122
occupational history of, 214
prevention of, 301
regulations for, 273–275, 301
self-report questionnaire measurement of, 165
Chest pain. See also Angina
associated with normal coronary arteries, 33
Chlamydia pneumoniae infections, as coronary heart disease risk factor, 137
Cholesterol
hypertension-related increase in, 147
noise-related increase in, 19
overtime work-related increase in, 296–297
Chronic fatigue syndrome, 139, 144, 145
Circadian patterns, 313
of “clockwise” shiftwork rotation schedules, 296
cortisol secretion, 144
epinephrine secretion, 144
of heart rate variability, 198–199, 200
of hypertension, 313
of myocardial infarction, 120
of myocardial ischemia, 135
of norepinephrine secretion, 144
of sudden cardiac death, 120
Clinical practice, public health approach in, 245–252
Coagulation
in atherogenesis, 137–138
in defense reaction, 439
effect of job strain on, 308, 313
effect of overtime work on, 296–297
Cognitive-behavioral skills training, for stress management, 232, 233, 240
INDEX
INDEX

Coherence, sense of, 72, 74
Cohort studies
 of effort-reward imbalance-cardiovascular disease relationship, 41–42
 of effort-reward imbalance-hypertension relationship, 44
 of job strain-cardiovascular disease relationship, 307
 of job strain-ischemic heart disease relationship, 29–31, 32, 33
 of job strain-related hypertension, 36, 53
 of shift work-cardiovascular disease relationship, 12, 13
Cold exposure
 as cardiovascular disease risk factor, 18, 308
 as coronary artery spasm risk factor, 153
 as hypertension risk factor, 124
 cold pressor test, 124, 133
Collective bargaining, 287–290
Collective work activities, 237
Combustion products, cardiotoxicity of, 22
Confidentiality, in physician-patient relationship, 189
Conflict, as sudden cardiac death risk factor, 112
Copenhagen Heart Study, 168
Coping strategies, 71
 interpersonal, 232
 overcommitment as, 85–86
CORDIS study, 18
Cornell Work Site Blood Pressure Study, 122, 130, 170, 171, 196, 257, 315
Coronary artery(ies)
 occlusion of, as myocardial ischemia cause, 119
 spasm of, 132
 cold-induced, 18
 nitrate exces-related, 21
 rebound, 133
Coronary artery bypass surgery, 2
 return to work after, 224
Coronary artery disease (CAD)
 cold as risk factor for, 18
 left ventricular ejection fraction in, 132
 myocardial ischemia associated with, 132,133, 134
 treatment of, 2
Coronary artery disease patients, return-to-work by, 223–225
Coronary heart disease (CHD)
 carbon monoxide-related exacerbation of, 257
 heart rate variability as predictor of, 199
 hypertension as risk factor for, 53
 infections as risk factor for, 137
 Corticotrophin-releasing factor, 42, 145
 Cortisol, 142–144, 312
Cost outcomes, of worksite risk management interventions, 244–245
 evaluation of, 242–245
 types of, 229–232
Costs, of occupational circulatory disease, 257–267
 Circulatory Disease Tax Fund for, 266
 direct costs, 260–261, 262–263
 indirect costs, 260, 263
 total costs, 264, 265
 Critical incident stress debriefing, 289
Cross-sectional studies
 of effort-reward imbalance-cardiovascular disease relationship, 42, 43
 of effort-reward imbalance-hypertension relationship, 44
 of job strain-hypertension relationship, 33, 34–36, 37, 307–308
 of job strain-ischemic heart disease relationship, 28–29, 32–33
 of shift work-cardiovascular disease relationship, 8, 10, 12
 in workplace intervention research, 294
Cytokines, pro-inflammatory, 136, 137
Cytomegalovirus infections, as coronary heart disease risk factor, 137
Daily hassles, adverse health effects of, 298
Danish Work Environment Act, 272
Decision-making, knowledge-based versus skill-based, 89–90
Defeat reaction, 129–130, 312
Defense reaction, 71, 139, 312
 chronic, 113–114
 as hypertension risk factor, 112–113, 125–129, 199
 relationship to ventricular fibrillation vulnerability, 110–111
 relationship to vigilance response, 111, 112
Defibrillators, automatic implantable cardioverter, 2, 120, 313
Demand-Control Model, of psychosocial job stressors, 76–77
 overlap with RHIA/VERA Model, 179
Demand-Control Questionnaire, 165, 166, 167, 170
Demand-Control-Support Model, of psychosocial job stressors, 78–83, 270
Depression
 post-myocardial infarction, 144
 prolactin in, 146
Diabetes, as mortality cause, 265
Diabetic patients, return to work by, 224
Dictionary of Occupational Titles (DOT), 172–173, 175, 176
Diet
 cardioprotective, 1–2, 47–48, 240
 high-fat, 40
 low-fat, low-calorie, 240
Dive reflex, 108, 109, 111, 130
Division of labor, 73–74
Downsizing, 251, 316
Dreaming, effect on blood pressure measurements, 204
INDEX

Exercise programs
 for stress management, 232–233
 in the workplace, 240, 248
Exercise stress testing, use in return-to-work decision-making, 224
Exhaustion, 98, 139–140
Exploring the Dangerous Trades (Hamilton), 70–71
Fatigue, job-related, 98, 206
Fibrinogen
 in atherosclerosis, 137–138
 job strain-related increase in, 40, 43
 in women, 55
Fibrinolysis
 cardiovascular metabolic syndrome-related decrease in, 147
 circadian pattern of, 8, 12, 120
"Fight-or-flight" reaction. See Defense reaction
Finnish Labour Protection Act, 272
Fitness-for-work assessments, 250–251
Fluorocarbons, cardiotoxicity of, 23–24
Forebrain
 in arrhythmia, 117
 in cardiovascular regulation, 107–114
 in electrical destabilization, 109–112
 in heart rate variability, 113
 in hypertension, 112–113
Framingham Heart Study, 2, 56, 300
Fringe benefits, cardiovascular disease-related loss of, 260, 264
Functional capacity assessment, 224
Ganzfibrozil, 12
General adaptation syndrome, 139–140
General Motors, 289
Genetic factors, in cardiovascular disease, 1
Glare pressor test, 124
Glucocorticoids
 sex hormone-inhibiting effects of, 145
 as stress mediators, 129
Glucose, hypertension-related increase in, 147
Haj pilgrims, heat exposure-related myocardial infarctions in, 18–19
Handgrip, isometric, 124–125
Harm assessment, of workplace interventions, 237–238
Hazardous exposures. See also Chemical exposure; Physical hazards exposure
 self-report questionnaire assessment of, 167
HbA1C, 40
Health care costs, of cardiovascular disease, 250–261, 262–263
Health maintenance organizations (HMOs), 260, 261
Health promotion programs, 230–240, 303, 315
 employers’ involvement in, 247–248
 social-ecological approach of, 246–247
Health risk appraisal questionnaires, 239
Health risk behaviors, for cardiovascular disease, 1
Healthy worker effect, 58
 in shiftwork-cardiovascular disease relationship studies, 9, 10, 15
Healthy worker survivor bias, in shiftwork-cardiovascular disease relationship studies, 9–10, 15
Hearing loss prevention programs, 275
Hearing protectors, 275
Heart rate
 hypertension-related increase in, 147
 overtime work-related increase in, 296
 as sympathetic tone indicator, 146–147
Heart rate variability, 88, 197–200, 203
 circadian patterns in, 120
 decrease prior to ST segment depression, 203
 definition of, 197
 effect of environmental stressors on, 199–200
 factors affecting, 198–200
 forebrain in, 113
 in hypertension, 199
 measurement techniques for, 197–198
 as return to work contraindication, 228
Heart transplantation, implication for return to work, 228
Heat exposure
 as cardiovascular disease risk factor, 18–19, 308
 as hypertension risk factor, 298–299
 as tachycardia risk factor, 135
Helicobacter pylori infections, as coronary heart disease risk factor, 137
Hematocrit, epinephrine-related increase in, 147
High-performance work organizations, 289–290
High-risk individuals, for cardiovascular disease, prevention interventions for, 303. See also Worksite risk management interventions, for cardiovascular disease
High-risk occupations, for cardiovascular disease, 308
 cardiovascular occupational stressors in, 214
 patients’ return to work in, 227–228
 workers’ compensation in, 283–286
Hippocrates, 69
Homicide, 265
Hospitals, staffing of, 275
Housework, as stress cause, 49, 56, 92, 195, 317
11-Hydroxy cortisol, job strain-related release of, 143–144
3-Hydroxy-3-methylgluhydryl coenzyme A, catecholamine-related release of, 147
Hyperfunctional overdrive, 113–114
Hyperlipidemia, 313. See also Cholesterol; Lipoproteins
Hypertension
 as atherosclerosis mediator, 136
 borderline
 as cardiovascular metabolic syndrome indicator, 218
 workplace interventions for, 220
 chemical exposure-related, 21, 122
 circadian patterns of, 313

327
Hypertension (cont.)
cold exposure-related, 18
defense response-related, 112–113, 125–129, 199
eicosensocardiologic mechanisms of, 121–132
essential
as cardiovascular disease risk factor, 2
definition of, 127
in industrial societies, 3
psychosocial factors in, 205
unidentified causes of, 2–3, 121
“white coat,” 147
heart rate variability in, 199
job strain-related, 33–38, 122–132, 219, 233–238
ambulatory studies of, 33–38, 121, 235–236
“carry over” effect in, 37–38, 235
defeat reaction in, 129–130
Effort-Distress model of, 130–131
Effort-Reward Imbalance Model of, 43–45, 122
high-risk occupations for, 122
Job Strain Model of, 122, 131, 196
laboratory studies of, 123–125
overtime work-related, 16–17, 296, 308
pharmacologic management of, 233–234
prevalence of, 121
prevention of, 236–237
relationship to duration of exposure, 59–60
relationship to ischemic heart disease, 131–132
relationship to job decision latitude, 170, 171
shiftwork-related, in women, 57
as stroke risk factor, 233, 234
sympathetic nervous system overactivity in, 127–128, 146–147, 149
thresholds for, 170–171
unmanaged, effect on return-to-work decisions, 224
in women, 56
lead exposure-related, 23
lipid levels in, 147
as myocardial infarction risk factor, 234
neurogenic, 205
noise-related, 19
Hypocalcemia, effect on QT interval, 202
Hypothalamic–pituitary–adrenocortical axis, 140, 142, 144–145, 312
in hypertension, 129, 130–131
Hypothalamus
in defense response, 111
in hypertension, 112–113
IHD. See Ischemic heart disease
Income, low, as cardiovascular disease risk factor, 40, 43
Income disparity, 49, 311, 315, 317
Industrial Poisons in the United States
(Hamilton), 70
Industrial Revolution, 3
Inflammation, as atherogenesis mechanism, 137–138
Injuries, determination of work-relatedness of, 283–284
Insulin, hypertension-related increase in, 147
Insulin resistance, 136
relationship to hemocoagul, 147
sympathetic nervous system overactivity in, 146–147, 148, 149
International Labor Organization, shiftwork recommendations of, 15–16, 275
Intervention research, 219, 293–308
employees’ participation in, 294
intervention levels in, 301–304
in physical and chemical hazards, 295
in psychosocial job characteristics, 297–301
purpose of, 293
sampling in, 300–301
types of, 294
in workplace epidemiology, 294–301
Interventions, for cardiovascular risk management. See Workplace risk management interventions, for cardiovascular disease
Ischemic heart disease (IHD)
Effort-Reward Imbalance Model of, 40–43
high-risk occupations for, 59, 122
job strain-related, 25–32
in myocardial ischemia patients, following return to work, 219
socioeconomic factors in, 46–47
ST-segment depression associated with, 135–136
threat-avoidant vigilant activity as risk factor for, 93–94
type A behavior as risk factor for, 71
work schedule-related, 295–297
Iso-strain, 81, 171
Japan
9th Industrial Accident Prevention Plan, 281
Industrial Safety and Health Law, 280–281
overwork-related deaths (“karoshi” phenomenon) in, 16–17, 280, 281, 296
suicide rate in, 280
Total Health Promotion Plan, 281
workplace cardiovascular risk management legislation in, 269–273, 280–281
Job analysis, theory-guided observational approach in, 177–183
Job characteristics. See also Psychosocial job stressors
occupational history of, 214, 215
Job Content Questionnaire (JCQ), 165, 166, 170, 171, 173, 179, 184, 215
Job decision latitude
definition of, 51
increase in, 316
low, as cardiovascular disease risk factor, 24–25, 237, 238, 307
decision-control-support model of, 78–83
in female workers, 51, 52
as myocardial ischemia risk factor, 215
measurement of, 165, 167, 170
INDEX

Job decision latitude (cont.)
of physicians, 83
relationship to sedentary behavior, 55
relationship to smoking cessation, 241
relationship to socioeconomic status, 311
effect on urinary catecholamine excretion, 142
Job insecurity
as cardiovascular disease risk factor, 263,
298–300
self-report questionnaire measurement of, 165
Job strain. See also Job stress; Psychosocial job stressors
as cardiovascular disease risk factor, 257
in European workers, 270
cumulative exposure to, 171
definition of, 170
determination of exposure to, 32, 37
formulations of, 170–171
as hypertension cause, 124, 233–238
ambulatory studies of, 235–236
"carry over effect in", 235
pharmacologic management of, 233–234
prevention of, 236–237
workers’ compensation for, 286
prevalence of, gender differences in, 50
reduction in, for hypertension management, 236–238
social support as buffer against, 171
thresholds for, 170–171
Job Strain Model, of psychosocial job stressors,
24–40, 51, 316
use in ambulatory blood pressure studies,
33–38
use in casual blood pressure studies, 38–39
comparison with Effort-Reward Imbalance Model, 310
selection bias of, 32–33
Job stress. See also Psychosocial job stressors
as atherogenesis risk factor, 136–138
as cardiac electrical deestabilization cause, 117–120
as cardiovascular disease risk factor, 3–4
as hypertension cause, 122–132
defeat reaction in, 129–130
defense reaction in, 125–129
Effort-Distress Model of, 130–131
laboratory studies of, 123–125
relationship to ischemic heart disease, 131–132
low-density lipoprotein increase in, 137
overtime work-related, 16
prevention of, 301–302
of returning-to-work patients, 226
Selye’s concept of, 71
of shift workers, 8
as sudden cardiac death risk factor, 117
workers’ compensation for, 282–285
Kaiser Permanente, 287
Karoishi, 16–17, 280, 281, 296
Korotkoff sounds, 191, 192
Lead exposure
cardiotoxicity of, 20, 23
as hypertension cause, 122, 257
limits for, 274
“Lean production,” 289, 316, 318
Learned helplessness, 81, 129–130
Left ventricular hypertrophy, 81, 129–130, 196,
199, 204, 218, 313
Legislation, for protection of workers’
cardiovascular health, 269–281, 318
in Europe, 269–273, 318
in Japan, 280–281
in the United States, 273–280
for chemical and physical exposures,
273–275
shift work regulations, 273
Leisure time, decrease in, 317
Leriche, René, 107
Liberty Mutual vs. Calabressi, 284
Life changes, 71
Lifestyle, status-related, 76
Lifestyle factors, in cardiovascular disease,
1–2
relationship to socioeconomic status, 47–48
of shift workers, 8
Lifestyle programs, for stress management,
232–233
Lifting, as myocardial infarction risk factor,
20
Lipoproteins
high-density, hypertension-related decrease in,
147
low-density
carbon dioxide-related increase in, 21
job strain-related increase in, 43, 56
stress-related increase in, 137
very-low-density, 143, 147
Locke, John, 107
Longitudinal studies
of job strain-hypertension relationship,
307–308
of shiftwork-cardiovascular disease
relationship, 8, 12, 13
in workplace intervention research, 294
Los Angeles Community College District, 287
Luteinizing-releasing hormone, 145
Malaise, as coronary artery disease relapse
indicator, 224, 227
Managed care, 83
Marx, Karl, 46, 73–74, 75–77
Material deprivation, low socioeconomic status-related, 46–47
Maternity leave, 289
Measurement, of psychosocial job stressors,
163–188
with expert-observer assessment, 175–181, 183–184
with linkage systems, 172–175, 183
multimethod approach in, 182–183
reverse causation in, 174
Measurement, of psychosocial job stressors (cont.)
with self-report questionnaires, 163–171
comparison with external assessment
methods, 181–182
shared job strain concept of, 175–176, 182
as source of job characteristics scores,
173–175
self-selection in, 174
Medicaid, 260, 266
Medical history, occupational cardiology,
189–190, 248–249
Medicare, 260, 266
Menstruation, heart rate variability during, 199
Mental stress
cognitive ergonomics of, 87–92
mental workload versus, 91–92
as myocardial ischemia risk factor, 132–133, 218
sympathetic nervous system overactivity in,
148–149
Metabolic disturbances, sympathetic nervous
system overactivity in, 146–147, 149
Methylchloroform, cardotoxicity of, 23
Methylene chloride
cardotoxicity of, 20, 23
exposure limits for, 274
Microtrauma, job strain-related, 286
Midbrain, in defense response, 111
Mind-body relationship, 59
Mortality ratios, proportional, 57
Motivation
expectancy-value theory of, 84–85
in return-to-work decision-making, 225
Musculoskeletal disorders, work-related,
275–276
Myocardial infarction
central nervous system in, 107–108
circadian patterns in, 120, 198–199, 313
heat exposure-related, 18–19
job strain-related, 26–27, 29, 30, 31, 32
high-risk occupations for, 59
irregular physical activity-related, 20, 308
“Monday morning,” 120, 313
mortality prediction for, 251
prospective studies of, 78–79
retrospective studies of, 78
overtime work-related, 16, 17, 308
QT interval after, 202
return to work following, 226
ST-segment depression after, 136
threat-avoidant vigilant work-related, 45–46
Myocardial ischemia
ambulatory measurement of, 200–201
cardiac electrical destabilization in, 118
circadian patterns in, 125
electrical destabilization in, 119
mental stress-related, 132–133
silent, 203, 224
workplace interventions for, 220
ST segment depression in, 201
ventricular fibrillation associated with, 110
Myocardium
carbon monoxide-related contractility decrease
in, 22
oxygen supply and demand of, factors
affecting, 132–135
National Health and Nutrition Examination
Survey, 20, 172, 173
National Health Interview Survey, 173
National Heart, Lung, and Blood Institute, 107, 108, 257
National Hospital Discharge Survey, 261
National Institute for Occupational Safety and
Health (NIOSH)
chemical hazard exposure limits of, 273, 274
noise exposure limits of, 274–275
shiftwork guidelines of, 16
statement on job stress prevention, 301–302
National Institute for Occupational Safety and
Health (NIOSH) questionnaire, 164, 166, 169–170
National Institute of Occupational Health
(Denmark), 297
Natural experiments, in worksite intervention
research, 294, 298, 299–300
Nitrate esters
cardotoxicity of, 20, 21, 120
as sudden cardiac death cause, 120
Nitric oxide, in stress response, 136–137
Nitroglycerin
cardotoxicity of, 21
exposure limits for, 274
as ischemic heart disease cause, 257
effect on rebound coronary artery vasospasm,
133
Noise exposure
as cardiovascular disease risk factor, 19, 257, 308
effect on blood pressure measurement, 196
as hypertension risk factor, 124, 135
limits for, 274–275
as myocardial ischemia risk factor, 135
prevention of, 301
regulations for, 274–275
Norepinephrine
in chronic fatigue syndrome, 145
circadian patterns in secretion of, 144
job strain-related secretion of, 143–144
North Carolina, Draft Ergonomic Standard, 276
Northern California Center for Occupational and
Environmental Health, 252
Norway, Work Environment Act, 272–273
Nurses
collective bargaining negotiations by, 287
shift work by, 3–4, 14, 57
blood pressure effect of, 196
heart rate variability effect of, 200
Nursing homes, staffing of, 273
Obesity
effect on heart rate variability, 198
INDEX

Obesity (cont.)
 relationship to job strain, 39–40
 socioeconomic factors in, 47–48
Observational analysis, of the workplace. See also Surveillance, of the workplace by clinicians, 215
Occupational exposure. See also Chemical exposure; Physical hazards exposure duration and timing of, 97–98
 multiple, 94–98
Occupational history, 213–216, 246, 314
Occupational medicine, status of, 70–71
Occupational Safety and Health Administration (OSHA)
 chemical hazard exposure limits of, 273, 274
 Draft Ergonomic Program Standard of, 279
 Draft Ergonomic Protection Standard of, 278–279
 Draft Proposed Safety and Health Program Rule of, 279
 noise exposure limits of, 275
Occupational Stress Index, 95, 96, 164, 165, 167, 169, 170, 215, 247
 Oklahoma State Medical Journal, 107
 Organisation de Coopération et de Développement Économiques, 49
Organizational interventions, 301, 302–303
Organizational prevention strategies, for job stress management, 231–232, 233, 240–242
Oslo Study of Cardiovascular Disease, 147
Outsourcing, 316
Overcommitment, 85–86
Overtime work
 as cardiovascular disease risk factor, 16–17, 45, 220, 308
 effect on heart rate variability, 200
 increase in, 315, 316
 as myocardial infarction risk factor, gender differences in, 56
 reduction in, for hypertension management, 237
 by returning-to-work cardiac patients, 226
 effect on urinary catecholamine excretion, 142
Pacemakers. See Defibrillators, automatic implantable cardioverter
Paracelsus, 69
Participatory Action Research (PAR), 249–250
Passive smoking, 19–20, 303, 308
Personal protection equipment, 301
Person-environment fit, 79
Person-Environment Fit model, 72, 164
 Person-Environment Fit questionnaire, 166
Physical activity
 effect on blood pressure measurement, 195
 implication for return-to-work decisionmaking, 224–226
 irregular, as myocardial infarction risk factor, 20, 308
 relationship to socioeconomic status, 47
Physical hazards exposure, as cardiovascular disease risk factor, 18–20
 control of
 collective bargaining agreements for, 288
 regulations for, 274–275
 as hypertension risk factor, 124–125
 occupational history of, 214
 prevention of, 301
Physicians
 job decision latitude of, 83, 317
 role in workplace modification, 221
Physician’s Guide to Medical Practice in the California Workers’ Compensation System, 283
Platelet activation, psychosocial factors in, 138
Platelet count, relationship to cardiovascular mortality, 147–148
Platelet dysfunction, cardiovascular metabolic syndrome-related, 147–148
Police officers, shift work by, 296
Population attributable risk, 309
Position Analysis Questionnaire, 215
Positron emission tomography (PET), 90
Posttraumatic stress disorder, 144
Power relationships. See also Job decision latitude; social status-related, 46, 47
Prevention, primary, secondary, and tertiary, 303–304
Primary care, occupational cardiology in, 249–250
Professionalism, of nurses, 287
Prolactin, 145–146
Propranolol, effect on heart rate variability, 113
Prospective studies, in workplace intervention research, 294
Psychology, social, 2, 73
Psychosocial job stressors, 24–46, 309–311. See also Income disparity; Job decision latitude; Job strain; Job stress; Overtime work; Shiftwork; Vigilance tasks
 collective bargaining agreements regarding, 288–289
 measurement of, 163–188
 with expert-observer assessment, 175–181, 183–184
 with linkage systems, 172–175, 183
 reverse causation in, 174
 with self-report questionnaires, 163–171
 theoretical models of, 69–105. See also Effort-Reward Imbalance Model; Job Strain Model
 cognitivist models, 87–94
 demand-control-support model, 78–83
 effort-reward imbalance model, 83–87
 historical overview of, 69–73
 multiple exposure models, 94–98
 social class/power relations models, 73–78
 workplace intervention studies in, 297–301
Public health approach, in clinical practice, 245–252
INDEX

Smoking cessation programs, 247-248, 303
lack of efficacy of, 247
Social epidemiology, 23, 73
Social exclusion, as sudden cardiac death cause, 109
Social factors, in cardiovascular disease, 2-3, 71-72, 109, 113, 257
Social isolation, as cardiovascular disease risk factor, 113, 257
Social networks, 71-72
Social psychology, 2, 73
Social Security Administration, 266
Social support
cardioprotective effects of, 113
demand-control-support model of, 81-83
as job strain moderator, 171, 310
measurement of, 165, 167, 171
self-report questionnaire measurement of, 165, 167
Social theory
application to work stress-health relationship, 76-78
historical overview of, 73-76
Socioeconomic status, low, as cardiovascular disease risk factor, 2, 46-49
in shift workers, 9, 12, 14
Socrates, 69
Sodium, as hypertension cause, 128
Solidarity, mechanical and organic, 74
Solvents exposure
as cardiac electrical destabilization cause, 120
cardiotoxicity of, 23-24
Sphygmomanometer, 191, 192, 193
Status groups, 76
Stereotypy, response, 140
Stimuli, anxiety- or fear-inducing sensitization to, 92-93
Stoke-Adams attacks, 202-203
Stress management programs, 86, 236, 240, 303
individual, 231-233
intervention levels in, 302
Stroke, hypertension as risk factor for, 53
ST segment depression
ambient temperature-related, 133
in myocardial ischemia, 201, 218
Sudden cardiac death, 1, 117
carbon monoxide exposure-related, 22
chlorofluorocarbon-related, 23
circadian patterns in, 120, 198-199
econoeurocardiologic mechanisms in, 108-112
ethanol-related, 23
forebrain in, 108
heart rate variability as predictor of, 88
"Monday morning," 120
nitrates esters-related, 21
sinus node arrest-related, 202-203
social exclusion-related, 109
Suicide, 74, 265, 280
Surveillance, of the cardionxious workplace, 314, 317, 319
Sweden, Public Health Service Act in, 271-272
Swedish Commission on the Work Environment, 272
Swedish Demand-Control Questionnaire, 165, 166, 167, 170
Swedish Work Environment Act, 272, 273
Swedish Work Organization Matrix, 165, 167, 168, 170, 171
Sympathetic nervous system
central nervous system mediation of, 113-114
overactivity of
in hyperactivity response to stress, 148-149
in hypertension, 127-128, 146-147, 149
in insulin resistance, 148, 149
in metabolic disturbances, 146-147, 149
Syncope, cardiac
as coronary artery disease relapse indicator, 224, 227
risk assessment of, 227-228
Syndrome X, 33, 134
Synergy, in occupational exposure, 95, 97
Systems approach, 69, 70-73
Tachyarrhythmia, ventricular, 117, 202-203
electrical destabilization-related, 117-120
heart rate variability as predictor of, 199
Task performance, cognitive ergonomics of, 88-90
Taxation, for coverage of cardiovascular disease health care costs, 266
Taylorism, 3, 72
Technology, collective bargaining agreements regarding, 289
Tecumseh study, 147
Temperature, environmental, relationship to cardiovascular disease risk, 18-19
Testosterone, 145
2,3,7,8-Tetrachlorodibenzop-p-dioxin,
cardiotoxicity of, 20
Threat-avoidant vigilant activity, 45-46, 92, 93-94, 122, 308, 310
Thrombogenesis, 137-138
Time pressure, in the workplace, 269-270, 315-316
Tissue plasminogen activator, 40, 138
Tokyo Declaration, 88, 281, 317
Total burden concept, 97-98
Total Quality Management, 241, 269, 273, 277
Transportation workers. See also Drivers, professional
shiftwork regulations for, 16
Trichloroethylene, cardiotoxicity of, 23
Triglycerides, hypertension-related increase in, 147
Tromso Study, 147
Type A behavior pattern, 2, 71
Unemployment, threat of, as cardiovascular disease risk factor, 298-300
U. S. Department of Transportation, 251-252
U. S. Environmental Protection Agency, noise reduction rate rating of, 275
Women (cont.)
job strain in (cont.),
combined with family responsibilities, 49, 56, 92, 195
as hypertension risk factor, 52–55, 235–236
shiftwork-related, 56–57
QT interval in, 202
Work absenceism, cardiovascular disease-related, 265
Work Environment Acts, 272
Workers' compensation, 281–286
apportionment criterion of, 284, 285
for cardiovascular disease, 265
for job stress, 282–285
Work fitness, cardiovascular, assessment of, 250–251
Work organization. See also Ergonomics
collective bargaining agreements regarding, 289
Work Organization Matrix, 165, 167, 168, 170, 171
Workplace, changes in organizational structure of, 3
Work role, 84, 86
Work schedules. See also Overtime work
as ischemic heart disease risk factor, 295–297
Worksite risk management interventions, for
cardiovascular disease, 220–221, 231–256
clinician's role in, 238–245
cost outcomes of, 244–245
evaluation of, 242–245
types of, 239–242
high-risk, 303
hypertension management in, 233–238
individual/group interface level in, 301, 302
individual level in, 301, 302
organizational level in, 301, 302–303
participation rates in, 244
for primary, secondary, and tertiary prevention, 303–304
public health approach in, 245–252
Workup, occupational cardiologic, 216–219, 249
World Health Organization, 270
Yale University, 287
Women (cont.)
job strain in (cont.)
combined with family responsibilities, 49, 56, 92, 195
as hypertension risk factor, 52–55, 235–236
shiftwork-related, 56–57
QT interval in, 202
Work absenteeism, cardiovascular disease-related, 285
Work Environment Acts, 272
Workers’ compensation, 281–286
apportionment criterion of, 284, 285
for cardiovascular disease, 265
for job stress, 282–285
Work fitness, cardiovascular, assessment of, 250–251
Work organization. See also Ergonomics
collective bargaining agreements regarding, 289
Work Organization Matrix, 165, 167, 168, 170, 171
Workplace, changes in organizational structure of, 3
Work role, 84, 86
Work schedules. See also Overtime work
as ischemic heart disease risk factor, 295–297
Worksite risk management interventions, for
cardiocvascular disease, 220–221, 231–256
clinician’s role in, 238–245
cost outcomes of, 244–245
evaluation of, 242–245
types of, 239–242
high-risk, 303
hypertension management in, 233–238
individual/group interface level in, 301, 302
individual level in, 301, 302
organizational level in, 301, 302–303
participation rates in, 244
for primary, secondary, and tertiary prevention, 303–304
public health approach in, 245–252
Workup, occupational cardiologic, 216–219, 249
World Health Organization, 270
Yale University, 287

U.S. Quality of Employment Surveys, 166, 171
University of California at Berkeley, Social and
Behavioral Epidemiology Program, 252
University of Oklahoma School of Medicine, 108

Vagotonia, 203
Vascular smooth muscle, stress-induced
hypertrophy of, 127–128
Vasoconstriction, mental stress-induced, 133
Ventricular fibrillation, complexcardiologic
factors in, 110–111
Veterans Administration Cooperative Study Group
on Antihypertensive Agents, 234

Vibration
effect on blood pressure measurement, 196
as cardiovascular disease risk factor, 20, 308
Vibration white finger disease, 200
Vigilance response, 111, 112
Vigilance tasks. See also Threat-avoidant vigilant
activity
blood pressure increase during, 131
as cardiovascular disease risk factor, 454–6
Viral infections, as coronary heart disease risk
factor, 137
Visual system, relationship to ventricular
fibrillation vulnerability, 110–111

Wages, cardiovascular disease-related loss of, 260
Washington State Department of Labor,
ergonomics program guidelines of, 276–277
Weber, Max, 46, 76–77
Weight loss, for hypertension management, 234
Whitehall Job Characteristics Questionnaire, 167, 168
Whitehall Study, 168, 182, 184, 311
WOLF Study, 56
Women
cardiocvascular disease risk factors for, 270
in Europe, 269
job decision latitude of, 51, 52, 83
job strain in, 50, 51–56, 83
effect on blood pressure profiles, 195
as cardiovascular disease risk factor, 51–52, 55, 307